![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen1OLD | Structured version Visualization version GIF version |
Description: One half of rpnnen 15000, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹‘𝑥):ℕ⟶ℚ such that ((𝐹‘𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) Obsolete version of rpnnen1 11858 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rpnnen1.1OLD | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
rpnnen1.2OLD | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
Ref | Expression |
---|---|
rpnnen1OLD | ⊢ ℝ ≼ (ℚ ↑𝑚 ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6718 | . 2 ⊢ (ℚ ↑𝑚 ℕ) ∈ V | |
2 | rpnnen1.1OLD | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
3 | rpnnen1.2OLD | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
4 | 2, 3 | rpnnen1lem1OLD 11859 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑𝑚 ℕ)) |
5 | rneq 5383 | . . . . . 6 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → ran (𝐹‘𝑥) = ran (𝐹‘𝑦)) | |
6 | 5 | supeq1d 8393 | . . . . 5 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < )) |
7 | 2, 3 | rpnnen1lem5OLD 11862 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥) |
8 | fveq2 6229 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
9 | 8 | rneqd 5385 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ran (𝐹‘𝑥) = ran (𝐹‘𝑦)) |
10 | 9 | supeq1d 8393 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < )) |
11 | id 22 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
12 | 10, 11 | eqeq12d 2666 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥 ↔ sup(ran (𝐹‘𝑦), ℝ, < ) = 𝑦)) |
13 | 12, 7 | vtoclga 3303 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → sup(ran (𝐹‘𝑦), ℝ, < ) = 𝑦) |
14 | 7, 13 | eqeqan12d 2667 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < ) ↔ 𝑥 = 𝑦)) |
15 | 6, 14 | syl5ib 234 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
16 | 15, 8 | impbid1 215 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
17 | 4, 16 | dom2 8040 | . 2 ⊢ ((ℚ ↑𝑚 ℕ) ∈ V → ℝ ≼ (ℚ ↑𝑚 ℕ)) |
18 | 1, 17 | ax-mp 5 | 1 ⊢ ℝ ≼ (ℚ ↑𝑚 ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 class class class wbr 4685 ↦ cmpt 4762 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 ≼ cdom 7995 supcsup 8387 ℝcr 9973 < clt 10112 / cdiv 10722 ℕcn 11058 ℤcz 11415 ℚcq 11826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-n0 11331 df-z 11416 df-q 11827 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |