MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Visualization version   GIF version

Theorem rplogsumlem1 25293
Description: Lemma for rplogsum 25336. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12887 . . 3 (𝐴 ∈ ℕ → (2...𝐴) ∈ Fin)
2 elfzuz 12452 . . . . . . . 8 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ (ℤ‘2))
3 eluz2nn 11840 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
42, 3syl 17 . . . . . . 7 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ ℕ)
54adantl 473 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℕ)
65nnrpd 11984 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ+)
76relogcld 24489 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ∈ ℝ)
82adantl 473 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ (ℤ‘2))
9 uz2m1nn 11877 . . . . . 6 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℕ)
115, 10nnmulcld 11181 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℕ)
127, 11nndivred 11182 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
131, 12fsumrecl 14585 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
14 2re 11203 . . . . 5 2 ∈ ℝ
1510nnrpd 11984 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ+)
1615rpsqrtcld 14270 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ+)
17 rerpdivcl 11975 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝑛 − 1)) ∈ ℝ+) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
1814, 16, 17sylancr 698 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
196rpsqrtcld 14270 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ+)
20 rerpdivcl 11975 . . . . 5 ((2 ∈ ℝ ∧ (√‘𝑛) ∈ ℝ+) → (2 / (√‘𝑛)) ∈ ℝ)
2114, 19, 20sylancr 698 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘𝑛)) ∈ ℝ)
2218, 21resubcld 10571 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
231, 22fsumrecl 14585 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
2414a1i 11 . 2 (𝐴 ∈ ℕ → 2 ∈ ℝ)
2516rpred 11986 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ)
265nnred 11148 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ)
27 peano2rem 10461 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ)
2926, 28remulcld 10183 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℝ)
3029, 22remulcld 10183 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) ∈ ℝ)
315nncnd 11149 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℂ)
32 ax-1cn 10107 . . . . . . . 8 1 ∈ ℂ
33 npcan 10403 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3431, 32, 33sylancl 697 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) + 1) = 𝑛)
3534fveq2d 6308 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
3615rpge0d 11990 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ (𝑛 − 1))
37 loglesqrt 24619 . . . . . . 7 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3828, 36, 37syl2anc 696 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3935, 38eqbrtrrd 4784 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ (√‘(𝑛 − 1)))
4019rpred 11986 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ)
4140, 25readdcld 10182 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ∈ ℝ)
42 remulcl 10134 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℝ ∧ 2 ∈ ℝ) → ((√‘𝑛) · 2) ∈ ℝ)
4340, 14, 42sylancl 697 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) ∈ ℝ)
4440, 25resubcld 10571 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ)
4526lem1d 11070 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ≤ 𝑛)
466rpge0d 11990 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ 𝑛)
4728, 36, 26, 46sqrtled 14285 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) ≤ 𝑛 ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
4845, 47mpbid 222 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (√‘𝑛))
4940, 25subge0d 10730 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))) ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
5048, 49mpbird 247 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))))
5125, 40, 40, 48leadd2dd 10755 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) + (√‘𝑛)))
5219rpcnd 11988 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℂ)
5352times2d 11389 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) = ((√‘𝑛) + (√‘𝑛)))
5451, 53breqtrrd 4788 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) · 2))
5541, 43, 44, 50, 54lemul1ad 11076 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) ≤ (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
5631sqsqrtd 14298 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛)↑2) = 𝑛)
57 subcl 10393 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
5831, 32, 57sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℂ)
5958sqsqrtd 14298 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1))↑2) = (𝑛 − 1))
6056, 59oveq12d 6783 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (𝑛 − (𝑛 − 1)))
6116rpcnd 11988 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℂ)
62 subsq 13087 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℂ ∧ (√‘(𝑛 − 1)) ∈ ℂ) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
6352, 61, 62syl2anc 696 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
64 nncan 10423 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑛 − 1)) = 1)
6531, 32, 64sylancl 697 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − (𝑛 − 1)) = 1)
6660, 63, 653eqtr3d 2766 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = 1)
67 2cn 11204 . . . . . . . . . . 11 2 ∈ ℂ
6867a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 2 ∈ ℂ)
6944recnd 10181 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℂ)
7052, 68, 69mulassd 10176 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
7155, 66, 703brtr3d 4791 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
72 1red 10168 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ∈ ℝ)
73 remulcl 10134 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7414, 44, 73sylancr 698 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7540, 74remulcld 10183 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ∈ ℝ)
7672, 75, 16lemul1d 12029 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ↔ (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1)))))
7771, 76mpbid 222 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))))
7861mulid2d 10171 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) = (√‘(𝑛 − 1)))
7974recnd 10181 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℂ)
8052, 79, 61mul32d 10359 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
8177, 78, 803brtr3d 4791 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
82 remsqsqrt 14117 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
8326, 46, 82syl2anc 696 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
84 remsqsqrt 14117 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8528, 36, 84syl2anc 696 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8683, 85oveq12d 6783 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (𝑛 · (𝑛 − 1)))
8752, 52, 61, 61mul4d 10361 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8886, 87eqtr3d 2760 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8916rpcnne0d 11995 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0))
9019rpcnne0d 11995 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))
91 divsubdiv 10854 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ∈ ℂ) ∧ (((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0) ∧ ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9268, 68, 89, 90, 91syl22anc 1440 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9368, 52, 61subdid 10599 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))))
9452, 61mulcomd 10174 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) = ((√‘(𝑛 − 1)) · (√‘𝑛)))
9593, 94oveq12d 6783 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9692, 95eqtr4d 2761 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))
9788, 96oveq12d 6783 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))))
9852, 61mulcld 10173 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℂ)
9919, 16rpmulcld 12002 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℝ+)
10074, 99rerpdivcld 12017 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℝ)
101100recnd 10181 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℂ)
10298, 98, 101mulassd 10176 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))))
10399rpne0d 11991 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ≠ 0)
10479, 98, 103divcan2d 10916 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))
105104oveq2d 6781 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10697, 102, 1053eqtrd 2762 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10781, 106breqtrrd 4788 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
1087, 25, 30, 39, 107letrd 10307 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
10911nngt0d 11177 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 < (𝑛 · (𝑛 − 1)))
110 ledivmul 11012 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ ∧ ((𝑛 · (𝑛 − 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 − 1)))) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
1117, 22, 29, 109, 110syl112anc 1443 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
112108, 111mpbird 247 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
1131, 12, 22, 112fsumle 14651 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
114 oveq1 6772 . . . . . . 7 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
115114fveq2d 6308 . . . . . 6 (𝑘 = 𝑛 → (√‘(𝑘 − 1)) = (√‘(𝑛 − 1)))
116115oveq2d 6781 . . . . 5 (𝑘 = 𝑛 → (2 / (√‘(𝑘 − 1))) = (2 / (√‘(𝑛 − 1))))
117 oveq1 6772 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑘 − 1) = ((𝑛 + 1) − 1))
118117fveq2d 6308 . . . . . 6 (𝑘 = (𝑛 + 1) → (√‘(𝑘 − 1)) = (√‘((𝑛 + 1) − 1)))
119118oveq2d 6781 . . . . 5 (𝑘 = (𝑛 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝑛 + 1) − 1))))
120 oveq1 6772 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 − 1) = (2 − 1))
121 2m1e1 11248 . . . . . . . . . 10 (2 − 1) = 1
122120, 121syl6eq 2774 . . . . . . . . 9 (𝑘 = 2 → (𝑘 − 1) = 1)
123122fveq2d 6308 . . . . . . . 8 (𝑘 = 2 → (√‘(𝑘 − 1)) = (√‘1))
124 sqrt1 14132 . . . . . . . 8 (√‘1) = 1
125123, 124syl6eq 2774 . . . . . . 7 (𝑘 = 2 → (√‘(𝑘 − 1)) = 1)
126125oveq2d 6781 . . . . . 6 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = (2 / 1))
12767div1i 10866 . . . . . 6 (2 / 1) = 2
128126, 127syl6eq 2774 . . . . 5 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = 2)
129 oveq1 6772 . . . . . . 7 (𝑘 = (𝐴 + 1) → (𝑘 − 1) = ((𝐴 + 1) − 1))
130129fveq2d 6308 . . . . . 6 (𝑘 = (𝐴 + 1) → (√‘(𝑘 − 1)) = (√‘((𝐴 + 1) − 1)))
131130oveq2d 6781 . . . . 5 (𝑘 = (𝐴 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝐴 + 1) − 1))))
132 nnz 11512 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
133 eluzp1p1 11826 . . . . . . 7 (𝐴 ∈ (ℤ‘1) → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
134 nnuz 11837 . . . . . . 7 ℕ = (ℤ‘1)
135133, 134eleq2s 2821 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
136 df-2 11192 . . . . . . 7 2 = (1 + 1)
137136fveq2i 6307 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
138135, 137syl6eleqr 2814 . . . . 5 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘2))
139 elfzuz 12452 . . . . . . . . . . 11 (𝑘 ∈ (2...(𝐴 + 1)) → 𝑘 ∈ (ℤ‘2))
140 uz2m1nn 11877 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → (𝑘 − 1) ∈ ℕ)
141139, 140syl 17 . . . . . . . . . 10 (𝑘 ∈ (2...(𝐴 + 1)) → (𝑘 − 1) ∈ ℕ)
142141adantl 473 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℕ)
143142nnrpd 11984 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℝ+)
144143rpsqrtcld 14270 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (√‘(𝑘 − 1)) ∈ ℝ+)
145 rerpdivcl 11975 . . . . . . 7 ((2 ∈ ℝ ∧ (√‘(𝑘 − 1)) ∈ ℝ+) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
14614, 144, 145sylancr 698 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
147146recnd 10181 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℂ)
148116, 119, 128, 131, 132, 138, 147telfsum 14656 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = (2 − (2 / (√‘((𝐴 + 1) − 1)))))
149 pncan 10400 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
15031, 32, 149sylancl 697 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 + 1) − 1) = 𝑛)
151150fveq2d 6308 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘((𝑛 + 1) − 1)) = (√‘𝑛))
152151oveq2d 6781 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘((𝑛 + 1) − 1))) = (2 / (√‘𝑛)))
153152oveq2d 6781 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
154153sumeq2dv 14553 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
155 nncn 11141 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
156 pncan 10400 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
157155, 32, 156sylancl 697 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
158157fveq2d 6308 . . . . . 6 (𝐴 ∈ ℕ → (√‘((𝐴 + 1) − 1)) = (√‘𝐴))
159158oveq2d 6781 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘((𝐴 + 1) − 1))) = (2 / (√‘𝐴)))
160159oveq2d 6781 . . . 4 (𝐴 ∈ ℕ → (2 − (2 / (√‘((𝐴 + 1) − 1)))) = (2 − (2 / (√‘𝐴))))
161148, 154, 1603eqtr3d 2766 . . 3 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (2 − (2 / (√‘𝐴))))
162 2rp 11951 . . . . . 6 2 ∈ ℝ+
163 nnrp 11956 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
164163rpsqrtcld 14270 . . . . . 6 (𝐴 ∈ ℕ → (√‘𝐴) ∈ ℝ+)
165 rpdivcl 11970 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝐴) ∈ ℝ+) → (2 / (√‘𝐴)) ∈ ℝ+)
166162, 164, 165sylancr 698 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ+)
167166rpge0d 11990 . . . 4 (𝐴 ∈ ℕ → 0 ≤ (2 / (√‘𝐴)))
168166rpred 11986 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ)
169 subge02 10657 . . . . 5 ((2 ∈ ℝ ∧ (2 / (√‘𝐴)) ∈ ℝ) → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
17014, 168, 169sylancr 698 . . . 4 (𝐴 ∈ ℕ → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
171167, 170mpbid 222 . . 3 (𝐴 ∈ ℕ → (2 − (2 / (√‘𝐴))) ≤ 2)
172161, 171eqbrtrd 4782 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ≤ 2)
17313, 23, 24, 113, 172letrd 10307 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  cuz 11800  +crp 11946  ...cfz 12440  cexp 12975  csqrt 14093  Σcsu 14536  logclog 24421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-tan 14922  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-cmp 21313  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423  df-cxp 24424
This theorem is referenced by:  rplogsumlem2  25294
  Copyright terms: Public domain W3C validator