MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   GIF version

Theorem rplogsum 25261
Description: The sum of log𝑝 / 𝑝 over the primes 𝑝𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rplogsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑝,𝐴   𝑁,𝑝,𝑥   𝜑,𝑝,𝑥   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝐿,𝑝,𝑥

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
5 rpvmasum.b . . 3 (𝜑𝐴𝑈)
6 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
71, 2, 3, 4, 5, 6rpvmasum 25260 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
83phicld 15524 . . . . . . 7 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
98adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
109nncnd 11074 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
11 fzfid 12812 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
12 inss1 3866 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
13 ssfi 8221 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1411, 12, 13sylancl 695 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
15 simpr 476 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
1612, 15sseldi 3634 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ (1...(⌊‘𝑥)))
17 elfznn 12408 . . . . . . . . 9 (𝑝 ∈ (1...(⌊‘𝑥)) → 𝑝 ∈ ℕ)
1816, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ℕ)
19 vmacl 24889 . . . . . . . . 9 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℝ)
20 nndivre 11094 . . . . . . . . 9 (((Λ‘𝑝) ∈ ℝ ∧ 𝑝 ∈ ℕ) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2119, 20mpancom 704 . . . . . . . 8 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2218, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2314, 22fsumrecl 14509 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℝ)
2423recnd 10106 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℂ)
2510, 24mulcld 10098 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) ∈ ℂ)
26 relogcl 24367 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 10106 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2925, 28subcld 10430 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
30 inss1 3866 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))
31 ssfi 8221 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
3211, 30, 31sylancl 695 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
33 simpr 476 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))
3430, 33sseldi 3634 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ (1...(⌊‘𝑥)))
3534, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℕ)
36 nnrp 11880 . . . . . . . . . 10 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ+)
3736relogcld 24414 . . . . . . . . 9 (𝑝 ∈ ℕ → (log‘𝑝) ∈ ℝ)
3837, 36rerpdivcld 11941 . . . . . . . 8 (𝑝 ∈ ℕ → ((log‘𝑝) / 𝑝) ∈ ℝ)
3935, 38syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑝) / 𝑝) ∈ ℝ)
4032, 39fsumrecl 14509 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℝ)
4140recnd 10106 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℂ)
4210, 41mulcld 10098 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) ∈ ℂ)
4342, 28subcld 10430 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
4410, 24, 41subdid 10524 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
4519recnd 10106 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℂ)
46 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4163 . . . . . . . . . . . . 13 (((log‘𝑝) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4837, 46, 47sylancl 695 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4948recnd 10106 . . . . . . . . . . 11 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ)
5036rpcnne0d 11919 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
51 divsubdir 10759 . . . . . . . . . . 11 (((Λ‘𝑝) ∈ ℂ ∧ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5245, 49, 50, 51syl3anc 1366 . . . . . . . . . 10 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5318, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5453sumeq2dv 14477 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5521recnd 10106 . . . . . . . . . 10 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5618, 55syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5748, 36rerpdivcld 11941 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℝ)
5857recnd 10106 . . . . . . . . . 10 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
5918, 58syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
6014, 56, 59fsumsub 14564 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
61 inss2 3867 . . . . . . . . . . . 12 (ℙ ∩ 𝑇) ⊆ 𝑇
62 sslin 3872 . . . . . . . . . . . 12 ((ℙ ∩ 𝑇) ⊆ 𝑇 → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6361, 62mp1i 13 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6435, 58syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
65 eldif 3617 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
66 incom 3838 . . . . . . . . . . . . . . . . . . . . 21 (ℙ ∩ 𝑇) = (𝑇 ∩ ℙ)
6766ineq2i 3844 . . . . . . . . . . . . . . . . . . . 20 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
68 inass 3856 . . . . . . . . . . . . . . . . . . . 20 (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
6967, 68eqtr4i 2676 . . . . . . . . . . . . . . . . . . 19 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ)
7069elin2 3834 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ 𝑝 ∈ ℙ))
7170simplbi2 654 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) → (𝑝 ∈ ℙ → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
7271con3dimp 456 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7365, 72sylbi 207 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7473adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → ¬ 𝑝 ∈ ℙ)
7574iffalsed 4130 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = 0)
7675oveq1d 6705 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = (0 / 𝑝))
77 eldifi 3765 . . . . . . . . . . . . . 14 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
7877, 18sylan2 490 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → 𝑝 ∈ ℕ)
79 div0 10753 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
8050, 79syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 / 𝑝) = 0)
8178, 80syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (0 / 𝑝) = 0)
8276, 81eqtrd 2685 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = 0)
8363, 64, 82, 14fsumss 14500 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))
84 inss2 3867 . . . . . . . . . . . . . . 15 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
85 inss1 3866 . . . . . . . . . . . . . . 15 (ℙ ∩ 𝑇) ⊆ ℙ
8684, 85sstri 3645 . . . . . . . . . . . . . 14 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ℙ
8786, 33sseldi 3634 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℙ)
8887iftrued 4127 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = (log‘𝑝))
8988oveq1d 6705 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = ((log‘𝑝) / 𝑝))
9089sumeq2dv 14477 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9183, 90eqtr3d 2687 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9291oveq2d 6706 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9354, 60, 923eqtrd 2689 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9493oveq2d 6706 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9525, 42, 28nnncan2d 10465 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9644, 94, 953eqtr4d 2695 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))))
9796mpteq2dva 4777 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) = (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))))
9819, 48resubcld 10496 . . . . . . . . 9 (𝑝 ∈ ℕ → ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ∈ ℝ)
9998, 36rerpdivcld 11941 . . . . . . . 8 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10018, 99syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10114, 100fsumrecl 14509 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
102101recnd 10106 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℂ)
103 rpssre 11881 . . . . . 6 + ⊆ ℝ
1048nncnd 11074 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
105 o1const 14394 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
106103, 104, 105sylancr 696 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
107103a1i 11 . . . . . 6 (𝜑 → ℝ+ ⊆ ℝ)
108 1red 10093 . . . . . 6 (𝜑 → 1 ∈ ℝ)
109 2re 11128 . . . . . . 7 2 ∈ ℝ
110109a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
111 breq1 4688 . . . . . . . . . . . . . 14 ((log‘𝑝) = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → ((log‘𝑝) ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
112 breq1 4688 . . . . . . . . . . . . . 14 (0 = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → (0 ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
11337adantr 480 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
114 vmaprm 24888 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
115114adantl 481 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (Λ‘𝑝) = (log‘𝑝))
116115eqcomd 2657 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) = (Λ‘𝑝))
117 eqle 10177 . . . . . . . . . . . . . . 15 (((log‘𝑝) ∈ ℝ ∧ (log‘𝑝) = (Λ‘𝑝)) → (log‘𝑝) ≤ (Λ‘𝑝))
118113, 116, 117syl2anc 694 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ≤ (Λ‘𝑝))
119 vmage0 24892 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℕ → 0 ≤ (Λ‘𝑝))
120119adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ ¬ 𝑝 ∈ ℙ) → 0 ≤ (Λ‘𝑝))
121111, 112, 118, 120ifbothda 4156 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝))
12219, 48subge0d 10655 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
123121, 122mpbird 247 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → 0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)))
12498, 36, 123divge0d 11950 . . . . . . . . . . 11 (𝑝 ∈ ℕ → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12518, 124syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12614, 100, 125fsumge0 14571 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
127101, 126absidd 14205 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12817adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 𝑝 ∈ ℕ)
129128, 99syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
13011, 129fsumrecl 14509 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
131109a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
132128, 124syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
13312a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
13411, 129, 132, 133fsumless 14572 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
135107sselda 3636 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
136135flcld 12639 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℤ)
137 rplogsumlem2 25219 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℤ → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
138136, 137syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
139101, 130, 131, 134, 138letrd 10232 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
140127, 139eqbrtrd 4707 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
141140adantrr 753 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
142107, 102, 108, 110, 141elo1d 14311 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ∈ 𝑂(1))
14310, 102, 106, 142o1mul2 14399 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) ∈ 𝑂(1))
14497, 143eqeltrrd 2731 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) ∈ 𝑂(1))
14529, 43, 144o1dif 14404 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)))
1467, 145mpbid 222 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cdif 3604  cin 3606  wss 3607  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  ccnv 5142  cima 5146  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  cz 11415  +crp 11870  ...cfz 12364  cfl 12631  abscabs 14018  𝑂(1)co1 14261  Σcsu 14460  cprime 15432  ϕcphi 15516  Unitcui 18685  ℤRHomczrh 19896  ℤ/nczn 19899  logclog 24346  Λcvma 24863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-rpss 6979  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-o1 14265  df-lo1 14266  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-tan 14846  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-numer 15490  df-denom 15491  df-phi 15518  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-qus 16216  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-gim 17748  df-ga 17769  df-cntz 17796  df-oppg 17822  df-od 17994  df-gex 17995  df-pgp 17996  df-lsm 18097  df-pj1 18098  df-cmn 18241  df-abl 18242  df-cyg 18326  df-dprd 18440  df-dpj 18441  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-0p 23482  df-limc 23675  df-dv 23676  df-ply 23989  df-idp 23990  df-coe 23991  df-dgr 23992  df-quot 24091  df-log 24348  df-cxp 24349  df-em 24764  df-cht 24868  df-vma 24869  df-chp 24870  df-ppi 24871  df-mu 24872  df-dchr 25003
This theorem is referenced by:  dirith2  25262
  Copyright terms: Public domain W3C validator