MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecld Structured version   Visualization version   GIF version

Theorem rpgecld 12114
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1 (𝜑𝐴 ∈ ℝ)
rpgecld.2 (𝜑𝐵 ∈ ℝ+)
rpgecld.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
rpgecld (𝜑𝐴 ∈ ℝ+)

Proof of Theorem rpgecld
StepHypRef Expression
1 rpgecld.2 . 2 (𝜑𝐵 ∈ ℝ+)
2 rpgecld.1 . 2 (𝜑𝐴 ∈ ℝ)
3 rpgecld.3 . 2 (𝜑𝐵𝐴)
4 rpgecl 12062 . 2 ((𝐵 ∈ ℝ+𝐴 ∈ ℝ ∧ 𝐵𝐴) → 𝐴 ∈ ℝ+)
51, 2, 3, 4syl3anc 1476 1 (𝜑𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145   class class class wbr 4786  cr 10137  cle 10277  +crp 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-rp 12036
This theorem is referenced by:  rlimno1  14592  isumrpcl  14782  divlogrlim  24602  logno1  24603  chprpcl  25153  vmadivsumb  25393  vmalogdivsum2  25448  vmalogdivsum  25449  2vmadivsumlem  25450  selbergb  25459  selberg2b  25462  selberg3lem2  25468  selberg3  25469  selberg4lem1  25470  selberg4  25471  selberg3r  25479  selberg4r  25480  selberg34r  25481  pntrlog2bndlem1  25487  pntrlog2bndlem2  25488  pntrlog2bndlem3  25489  pntrlog2bndlem4  25490  pntrlog2bndlem5  25491  pntrlog2bndlem6a  25492  pntrlog2bndlem6  25493  pntrlog2bnd  25494  pntibndlem2  25501  pntlemb  25507
  Copyright terms: Public domain W3C validator