![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpge0 | Structured version Visualization version GIF version |
Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
rpge0 | ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12024 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpgt0 12029 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 0re 10224 | . . 3 ⊢ 0 ∈ ℝ | |
4 | ltle 10310 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
5 | 3, 4 | mpan 708 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 class class class wbr 4796 ℝcr 10119 0cc0 10120 < clt 10258 ≤ cle 10259 ℝ+crp 12017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-i2m1 10188 ax-1ne0 10189 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-rp 12018 |
This theorem is referenced by: rprege0 12032 rpge0d 12061 xralrple 12221 xlemul1 12305 infmrp1 12359 sqrlem1 14174 rpsqrtcl 14196 divrcnv 14775 ef01bndlem 15105 stdbdmet 22514 reconnlem2 22823 cphsqrtcl3 23179 iscmet3lem3 23280 minveclem3 23392 itg2const2 23699 itg2mulclem 23704 aalioulem2 24279 pige3 24460 argregt0 24547 argrege0 24548 cxpcn3 24680 cxplim 24889 cxp2lim 24894 divsqrtsumlem 24897 logdiflbnd 24912 basellem4 25001 ppiltx 25094 bposlem8 25207 bposlem9 25208 chebbnd1 25352 mulog2sumlem2 25415 selbergb 25429 selberg2b 25432 nmcexi 29186 nmcopexi 29187 nmcfnexi 29211 sqsscirc1 30255 divsqrtid 30973 logdivsqrle 31029 hgt750lem2 31031 subfacval3 31470 ptrecube 33714 heicant 33749 itg2addnclem 33766 itg2gt0cn 33770 areacirclem1 33805 areacirclem4 33808 areacirc 33810 cntotbnd 33900 xralrple4 40079 xralrple3 40080 fourierdlem103 40921 blenre 42870 |
Copyright terms: Public domain | W3C validator |