![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpexpcl | Structured version Visualization version GIF version |
Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
rpexpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 468 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ+) | |
2 | rpne0 12050 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
3 | 2 | adantr 466 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝐴 ≠ 0) |
4 | simpr 471 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | rpssre 12045 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
6 | ax-resscn 10194 | . . . 4 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstri 3759 | . . 3 ⊢ ℝ+ ⊆ ℂ |
8 | rpmulcl 12057 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑥 · 𝑦) ∈ ℝ+) | |
9 | 1rp 12038 | . . 3 ⊢ 1 ∈ ℝ+ | |
10 | rpreccl 12059 | . . . 4 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
11 | 10 | adantr 466 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ+) |
12 | 7, 8, 9, 11 | expcl2lem 13078 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
13 | 1, 3, 4, 12 | syl3anc 1475 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ≠ wne 2942 (class class class)co 6792 ℂcc 10135 ℝcr 10136 0cc0 10137 1c1 10138 / cdiv 10885 ℤcz 11578 ℝ+crp 12034 ↑cexp 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-seq 13008 df-exp 13067 |
This theorem is referenced by: expgt0 13099 ltexp2a 13118 expcan 13119 ltexp2 13120 leexp2a 13122 ltexp2r 13123 expnlbnd2 13201 rpexpcld 13238 expcnv 14802 effsumlt 15046 ef01bndlem 15119 rpnnen2lem11 15158 iscmet3lem3 23306 iscmet3lem1 23307 iscmet3lem2 23308 iscmet3 23309 minveclem3 23418 pjthlem1 23426 aaliou3lem1 24316 aaliou3lem2 24317 aaliou3lem3 24318 aaliou3lem8 24319 aaliou3lem5 24321 aaliou3lem6 24322 aaliou3lem7 24323 aaliou3lem9 24324 tanregt0 24505 asinlem3 24818 cxp2limlem 24922 ftalem5 25023 basellem3 25029 basellem4 25030 basellem8 25034 chebbnd1lem3 25380 dchrisum0lem1a 25395 dchrisum0lem1b 25424 dchrisum0lem1 25425 dchrisum0lem2a 25426 dchrisum0lem2 25427 dchrisum0lem3 25428 pntlemd 25503 pntlema 25505 pntlemb 25506 pntlemh 25508 pntlemr 25511 pntlemi 25513 pntlemf 25514 pntlemo 25516 pntlem3 25518 pntleml 25520 ostth2lem1 25527 ostth3 25547 minvecolem3 28066 pjhthlem1 28584 dpexpp1 29950 dya2icoseg 30673 faclimlem3 31963 geomcau 33880 dignnld 42915 |
Copyright terms: Public domain | W3C validator |