![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpdp2cl | Structured version Visualization version GIF version |
Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
rpdp2cl.a | ⊢ 𝐴 ∈ ℕ0 |
rpdp2cl.b | ⊢ 𝐵 ∈ ℝ+ |
Ref | Expression |
---|---|
rpdp2cl | ⊢ _𝐴𝐵 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 29908 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
2 | rpdp2cl.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
3 | 2 | nn0rei 11515 | . . . 4 ⊢ 𝐴 ∈ ℝ |
4 | rpssre 12056 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
5 | rpdp2cl.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
6 | 10nn 11726 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
7 | nnrp 12055 | . . . . . . 7 ⊢ (;10 ∈ ℕ → ;10 ∈ ℝ+) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
9 | rpdivcl 12069 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐵 / ;10) ∈ ℝ+) | |
10 | 5, 8, 9 | mp2an 710 | . . . . 5 ⊢ (𝐵 / ;10) ∈ ℝ+ |
11 | 4, 10 | sselii 3741 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
12 | readdcl 10231 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) → (𝐴 + (𝐵 / ;10)) ∈ ℝ) | |
13 | 3, 11, 12 | mp2an 710 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
14 | 3, 11 | pm3.2i 470 | . . . 4 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
15 | 2 | nn0ge0i 11532 | . . . . 5 ⊢ 0 ≤ 𝐴 |
16 | rpgt0 12057 | . . . . . 6 ⊢ ((𝐵 / ;10) ∈ ℝ+ → 0 < (𝐵 / ;10)) | |
17 | 10, 16 | ax-mp 5 | . . . . 5 ⊢ 0 < (𝐵 / ;10) |
18 | 15, 17 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 𝐴 ∧ 0 < (𝐵 / ;10)) |
19 | addgegt0 10727 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐵 / ;10))) → 0 < (𝐴 + (𝐵 / ;10))) | |
20 | 14, 18, 19 | mp2an 710 | . . 3 ⊢ 0 < (𝐴 + (𝐵 / ;10)) |
21 | elrp 12047 | . . 3 ⊢ ((𝐴 + (𝐵 / ;10)) ∈ ℝ+ ↔ ((𝐴 + (𝐵 / ;10)) ∈ ℝ ∧ 0 < (𝐴 + (𝐵 / ;10)))) | |
22 | 13, 20, 21 | mpbir2an 993 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ+ |
23 | 1, 22 | eqeltri 2835 | 1 ⊢ _𝐴𝐵 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 ℝcr 10147 0cc0 10148 1c1 10149 + caddc 10151 < clt 10286 ≤ cle 10287 / cdiv 10896 ℕcn 11232 ℕ0cn0 11504 ;cdc 11705 ℝ+crp 12045 _cdp2 29907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-dec 11706 df-rp 12046 df-dp2 29908 |
This theorem is referenced by: rpdpcl 29941 dpexpp1 29946 hgt750lemd 31056 hgt750lem 31059 hgt750lem2 31060 hgt750leme 31066 |
Copyright terms: Public domain | W3C validator |