![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpdivcl | Structured version Visualization version GIF version |
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpdivcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12024 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rprene0 12034 | . . 3 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
3 | redivcl 10928 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
4 | 3 | 3expb 1113 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℝ) |
5 | 1, 2, 4 | syl2an 495 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) |
6 | elrp 12019 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
7 | elrp 12019 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
8 | divgt0 11075 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
9 | 6, 7, 8 | syl2anb 497 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 / 𝐵)) |
10 | elrp 12019 | . 2 ⊢ ((𝐴 / 𝐵) ∈ ℝ+ ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 < (𝐴 / 𝐵))) | |
11 | 5, 9, 10 | sylanbrc 701 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 ≠ wne 2924 class class class wbr 4796 (class class class)co 6805 ℝcr 10119 0cc0 10120 < clt 10258 / cdiv 10868 ℝ+crp 12017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-po 5179 df-so 5180 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-rp 12018 |
This theorem is referenced by: rpreccl 12042 rphalfcl 12043 rpdivcld 12074 bcrpcl 13281 sqrlem7 14180 caurcvgr 14595 isprm5 15613 4sqlem12 15854 sylow1lem1 18205 metss2lem 22509 metss2 22510 minveclem3 23392 ovoliunlem3 23464 vitalilem4 23571 aaliou3lem8 24291 abelthlem8 24384 pige3 24460 advlogexp 24592 atan1 24846 log2cnv 24862 cxp2limlem 24893 harmonicbnd4 24928 basellem1 24998 logexprlim 25141 logfacrlim2 25142 bcmono 25193 bposlem1 25200 bposlem7 25206 bposlem9 25208 rplogsumlem1 25364 dchrisumlem3 25371 dchrvmasum2lem 25376 dchrvmasum2if 25377 dchrvmasumlem2 25378 dchrvmasumlem3 25379 dchrvmasumiflem2 25382 dchrisum0lem2a 25397 dchrisum0lem2 25398 mudivsum 25410 mulogsumlem 25411 mulogsum 25412 mulog2sumlem1 25414 mulog2sumlem2 25415 mulog2sumlem3 25416 selberglem1 25425 selberglem2 25426 selberg 25428 selberg3lem1 25437 selbergr 25448 pntpbnd1a 25465 pntibndlem1 25469 pntibndlem3 25472 pntlema 25476 pntlemb 25477 pntlemg 25478 pntlemr 25482 pntlemj 25483 pntlemf 25485 smcnlem 27853 blocnilem 27960 minvecolem3 28033 nmcexi 29186 rpdp2cl 29890 dp2ltc 29895 dpgti 29915 circum 31867 faclim 31931 taupilem1 33470 pigt3 33707 poimirlem29 33743 mblfinlem3 33753 itg2addnclem2 33767 itg2addnclem3 33768 ftc1anclem7 33796 ftc1anc 33798 heiborlem5 33919 heiborlem7 33921 proot1ex 38273 |
Copyright terms: Public domain | W3C validator |