Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite6 Structured version   Visualization version   GIF version

Theorem rp-isfinite6 38384
 Description: A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by Richard Penner, 10-Mar-2020.)
Assertion
Ref Expression
rp-isfinite6 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
Distinct variable group:   𝐴,𝑛

Proof of Theorem rp-isfinite6
StepHypRef Expression
1 exmid 430 . . . 4 (𝐴 = ∅ ∨ ¬ 𝐴 = ∅)
21biantrur 528 . . 3 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin))
3 andir 948 . . 3 (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin) ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
42, 3bitri 264 . 2 (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)))
5 simpl 474 . . . 4 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) → 𝐴 = ∅)
6 0fin 8355 . . . . . 6 ∅ ∈ Fin
7 eleq1a 2834 . . . . . 6 (∅ ∈ Fin → (𝐴 = ∅ → 𝐴 ∈ Fin))
86, 7ax-mp 5 . . . . 5 (𝐴 = ∅ → 𝐴 ∈ Fin)
98ancli 575 . . . 4 (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐴 ∈ Fin))
105, 9impbii 199 . . 3 ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ 𝐴 = ∅)
11 rp-isfinite5 38383 . . . . . 6 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
12 df-rex 3056 . . . . . 6 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1311, 12bitri 264 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1413anbi2i 732 . . . 4 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
15 df-rex 3056 . . . . 5 (∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
16 en0 8186 . . . . . . . . . . . . . . 15 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
1716bicomi 214 . . . . . . . . . . . . . 14 (𝐴 = ∅ ↔ 𝐴 ≈ ∅)
18 ensymb 8171 . . . . . . . . . . . . . 14 (𝐴 ≈ ∅ ↔ ∅ ≈ 𝐴)
1917, 18bitri 264 . . . . . . . . . . . . 13 (𝐴 = ∅ ↔ ∅ ≈ 𝐴)
2019notbii 309 . . . . . . . . . . . 12 𝐴 = ∅ ↔ ¬ ∅ ≈ 𝐴)
21 elnn0 11506 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
2221anbi1i 733 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴))
23 andir 948 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2422, 23bitri 264 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
2520, 24anbi12i 735 . . . . . . . . . . 11 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
26 andi 947 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
2725, 26bitri 264 . . . . . . . . . 10 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
28 3anass 1081 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)))
29 3anass 1081 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
3028, 29orbi12i 544 . . . . . . . . . 10 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))))
3127, 30sylbb2 228 . . . . . . . . 9 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))
32 simp2 1132 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
33 oveq2 6822 . . . . . . . . . . . 12 (𝑛 = 0 → (1...𝑛) = (1...0))
34 fz10 12575 . . . . . . . . . . . 12 (1...0) = ∅
3533, 34syl6eq 2810 . . . . . . . . . . 11 (𝑛 = 0 → (1...𝑛) = ∅)
36 simp2 1132 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) = ∅)
37 simp3 1133 . . . . . . . . . . . . 13 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → (1...𝑛) ≈ 𝐴)
3836, 37eqbrtrrd 4828 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ∅ ≈ 𝐴)
39 simp1 1131 . . . . . . . . . . . 12 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
4038, 39pm2.21dd 186 . . . . . . . . . . 11 ((¬ ∅ ≈ 𝐴 ∧ (1...𝑛) = ∅ ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4135, 40syl3an2 1168 . . . . . . . . . 10 ((¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ)
4232, 41jaoi 393 . . . . . . . . 9 (((¬ ∅ ≈ 𝐴𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
4331, 42syl 17 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ)
44 simprr 813 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (1...𝑛) ≈ 𝐴)
4543, 44jca 555 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) → (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
46 nngt0 11261 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
47 hash0 13370 . . . . . . . . . . . . 13 (♯‘∅) = 0
4847a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘∅) = 0)
49 nnnn0 11511 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
50 hashfz1 13348 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
5149, 50syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
5246, 48, 513brtr4d 4836 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (♯‘∅) < (♯‘(1...𝑛)))
53 fzfi 12985 . . . . . . . . . . . 12 (1...𝑛) ∈ Fin
54 hashsdom 13382 . . . . . . . . . . . 12 ((∅ ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛)))
556, 53, 54mp2an 710 . . . . . . . . . . 11 ((♯‘∅) < (♯‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛))
5652, 55sylib 208 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∅ ≺ (1...𝑛))
5756anim1i 593 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴))
58 sdomentr 8261 . . . . . . . . . . 11 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ∅ ≺ 𝐴)
59 sdomnen 8152 . . . . . . . . . . 11 (∅ ≺ 𝐴 → ¬ ∅ ≈ 𝐴)
6058, 59syl 17 . . . . . . . . . 10 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ ∅ ≈ 𝐴)
61 ensymb 8171 . . . . . . . . . . . 12 (∅ ≈ 𝐴𝐴 ≈ ∅)
6261, 16bitri 264 . . . . . . . . . . 11 (∅ ≈ 𝐴𝐴 = ∅)
6362notbii 309 . . . . . . . . . 10 (¬ ∅ ≈ 𝐴 ↔ ¬ 𝐴 = ∅)
6460, 63sylib 208 . . . . . . . . 9 ((∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6557, 64syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅)
6649anim1i 593 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
6765, 66jca 555 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
6845, 67impbii 199 . . . . . 6 ((¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
6968exbii 1923 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))
70 19.42v 2030 . . . . 5 (∃𝑛𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
7115, 69, 703bitr2ri 289 . . . 4 ((¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7214, 71bitri 264 . . 3 ((¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)
7310, 72orbi12i 544 . 2 (((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)) ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
744, 73bitri 264 1 (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632  ∃wex 1853   ∈ wcel 2139  ∃wrex 3051  ∅c0 4058   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814   ≈ cen 8120   ≺ csdm 8122  Fincfn 8123  0cc0 10148  1c1 10149   < clt 10286  ℕcn 11232  ℕ0cn0 11504  ...cfz 12539  ♯chash 13331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator