Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite5 Structured version   Visualization version   GIF version

Theorem rp-isfinite5 38383
 Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by Richard Penner, 3-Mar-2020.)
Assertion
Ref Expression
rp-isfinite5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rp-isfinite5
StepHypRef Expression
1 fvex 6363 . . . 4 (♯‘𝐴) ∈ V
2 hashcl 13359 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3 isfinite4 13365 . . . . . 6 (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴)
43biimpi 206 . . . . 5 (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
52, 4jca 555 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴))
6 eleq1 2827 . . . . . 6 (𝑛 = (♯‘𝐴) → (𝑛 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0))
7 oveq2 6822 . . . . . . 7 (𝑛 = (♯‘𝐴) → (1...𝑛) = (1...(♯‘𝐴)))
87breq1d 4814 . . . . . 6 (𝑛 = (♯‘𝐴) → ((1...𝑛) ≈ 𝐴 ↔ (1...(♯‘𝐴)) ≈ 𝐴))
96, 8anbi12d 749 . . . . 5 (𝑛 = (♯‘𝐴) → ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴)))
109spcegv 3434 . . . 4 ((♯‘𝐴) ∈ V → (((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴) → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
111, 5, 10mpsyl 68 . . 3 (𝐴 ∈ Fin → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
12 df-rex 3056 . . 3 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1311, 12sylibr 224 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
14 hasheni 13350 . . . . . . 7 ((1...𝑛) ≈ 𝐴 → (♯‘(1...𝑛)) = (♯‘𝐴))
1514eqcomd 2766 . . . . . 6 ((1...𝑛) ≈ 𝐴 → (♯‘𝐴) = (♯‘(1...𝑛)))
16 hashfz1 13348 . . . . . 6 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
17 ovex 6842 . . . . . . 7 (1...(♯‘𝐴)) ∈ V
18 eqtr 2779 . . . . . . 7 (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (♯‘𝐴) = 𝑛)
19 oveq2 6822 . . . . . . . 8 ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) = (1...𝑛))
20 eqeng 8157 . . . . . . . 8 ((1...(♯‘𝐴)) ∈ V → ((1...(♯‘𝐴)) = (1...𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛)))
2119, 20syl5 34 . . . . . . 7 ((1...(♯‘𝐴)) ∈ V → ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) ≈ (1...𝑛)))
2217, 18, 21mpsyl 68 . . . . . 6 (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛))
2315, 16, 22syl2anr 496 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ (1...𝑛))
24 entr 8175 . . . . 5 (((1...(♯‘𝐴)) ≈ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴)
2523, 24sylancom 704 . . . 4 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴)
2625, 3sylibr 224 . . 3 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → 𝐴 ∈ Fin)
2726rexlimiva 3166 . 2 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴𝐴 ∈ Fin)
2813, 27impbii 199 1 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139  ∃wrex 3051  Vcvv 3340   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814   ≈ cen 8120  Fincfn 8123  1c1 10149  ℕ0cn0 11504  ...cfz 12539  ♯chash 13331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332 This theorem is referenced by:  rp-isfinite6  38384
 Copyright terms: Public domain W3C validator