![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-isfinite5 | Structured version Visualization version GIF version |
Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by Richard Penner, 3-Mar-2020.) |
Ref | Expression |
---|---|
rp-isfinite5 | ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6363 | . . . 4 ⊢ (♯‘𝐴) ∈ V | |
2 | hashcl 13359 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | isfinite4 13365 | . . . . . 6 ⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | |
4 | 3 | biimpi 206 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) |
5 | 2, 4 | jca 555 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴)) |
6 | eleq1 2827 | . . . . . 6 ⊢ (𝑛 = (♯‘𝐴) → (𝑛 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)) | |
7 | oveq2 6822 | . . . . . . 7 ⊢ (𝑛 = (♯‘𝐴) → (1...𝑛) = (1...(♯‘𝐴))) | |
8 | 7 | breq1d 4814 | . . . . . 6 ⊢ (𝑛 = (♯‘𝐴) → ((1...𝑛) ≈ 𝐴 ↔ (1...(♯‘𝐴)) ≈ 𝐴)) |
9 | 6, 8 | anbi12d 749 | . . . . 5 ⊢ (𝑛 = (♯‘𝐴) → ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴))) |
10 | 9 | spcegv 3434 | . . . 4 ⊢ ((♯‘𝐴) ∈ V → (((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴) → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))) |
11 | 1, 5, 10 | mpsyl 68 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
12 | df-rex 3056 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) | |
13 | 11, 12 | sylibr 224 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
14 | hasheni 13350 | . . . . . . 7 ⊢ ((1...𝑛) ≈ 𝐴 → (♯‘(1...𝑛)) = (♯‘𝐴)) | |
15 | 14 | eqcomd 2766 | . . . . . 6 ⊢ ((1...𝑛) ≈ 𝐴 → (♯‘𝐴) = (♯‘(1...𝑛))) |
16 | hashfz1 13348 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
17 | ovex 6842 | . . . . . . 7 ⊢ (1...(♯‘𝐴)) ∈ V | |
18 | eqtr 2779 | . . . . . . 7 ⊢ (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (♯‘𝐴) = 𝑛) | |
19 | oveq2 6822 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) = (1...𝑛)) | |
20 | eqeng 8157 | . . . . . . . 8 ⊢ ((1...(♯‘𝐴)) ∈ V → ((1...(♯‘𝐴)) = (1...𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛))) | |
21 | 19, 20 | syl5 34 | . . . . . . 7 ⊢ ((1...(♯‘𝐴)) ∈ V → ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) ≈ (1...𝑛))) |
22 | 17, 18, 21 | mpsyl 68 | . . . . . 6 ⊢ (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛)) |
23 | 15, 16, 22 | syl2anr 496 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ (1...𝑛)) |
24 | entr 8175 | . . . . 5 ⊢ (((1...(♯‘𝐴)) ≈ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴) | |
25 | 23, 24 | sylancom 704 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴) |
26 | 25, 3 | sylibr 224 | . . 3 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → 𝐴 ∈ Fin) |
27 | 26 | rexlimiva 3166 | . 2 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 → 𝐴 ∈ Fin) |
28 | 13, 27 | impbii 199 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ≈ cen 8120 Fincfn 8123 1c1 10149 ℕ0cn0 11504 ...cfz 12539 ♯chash 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-hash 13332 |
This theorem is referenced by: rp-isfinite6 38384 |
Copyright terms: Public domain | W3C validator |