![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-imass | Structured version Visualization version GIF version |
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by Richard Penner, 24-Dec-2019.) |
Ref | Expression |
---|---|
rp-imass | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5156 | . . 3 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
2 | 1 | sseq1i 3662 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
3 | dmres 5454 | . . . 4 ⊢ dom (𝑅 ↾ 𝐴) = (𝐴 ∩ dom 𝑅) | |
4 | inss1 3866 | . . . 4 ⊢ (𝐴 ∩ dom 𝑅) ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 3668 | . . 3 ⊢ dom (𝑅 ↾ 𝐴) ⊆ 𝐴 |
6 | 5 | biantrur 526 | . 2 ⊢ (ran (𝑅 ↾ 𝐴) ⊆ 𝐵 ↔ (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
7 | relres 5461 | . . . . 5 ⊢ Rel (𝑅 ↾ 𝐴) | |
8 | relssdmrn 5694 | . . . . 5 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) |
10 | xpss12 5158 | . . . 4 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | syl5ss 3647 | . . 3 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
12 | dmss 5355 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ dom (𝐴 × 𝐵)) | |
13 | dmxpss 5600 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
14 | 12, 13 | syl6ss 3648 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ 𝐴) |
15 | rnss 5386 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ ran (𝐴 × 𝐵)) | |
16 | rnxpss 5601 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
17 | 15, 16 | syl6ss 3648 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
18 | 14, 17 | jca 553 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
19 | 11, 18 | impbii 199 | . 2 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
20 | 2, 6, 19 | 3bitri 286 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∩ cin 3606 ⊆ wss 3607 × cxp 5141 dom cdm 5143 ran crn 5144 ↾ cres 5145 “ cima 5146 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: dfhe2 38385 |
Copyright terms: Public domain | W3C validator |