Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-fakeuninass Structured version   Visualization version   GIF version

Theorem rp-fakeuninass 38360
 Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by Richard Penner, 29-Feb-2020.)
Assertion
Ref Expression
rp-fakeuninass (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))

Proof of Theorem rp-fakeuninass
StepHypRef Expression
1 rp-fakeinunass 38359 . 2 (𝐴𝐶 ↔ ((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)))
2 eqcom 2763 . 2 (((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)) ↔ (𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴))
3 incom 3944 . . . 4 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
4 uncom 3896 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54ineq1i 3949 . . . 4 ((𝐵𝐴) ∩ 𝐶) = ((𝐴𝐵) ∩ 𝐶)
63, 5eqtri 2778 . . 3 (𝐶 ∩ (𝐵𝐴)) = ((𝐴𝐵) ∩ 𝐶)
7 uncom 3896 . . . 4 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐶𝐵))
8 incom 3944 . . . . 5 (𝐶𝐵) = (𝐵𝐶)
98uneq2i 3903 . . . 4 (𝐴 ∪ (𝐶𝐵)) = (𝐴 ∪ (𝐵𝐶))
107, 9eqtri 2778 . . 3 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐵𝐶))
116, 10eqeq12i 2770 . 2 ((𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴) ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
121, 2, 113bitri 286 1 (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1628   ∪ cun 3709   ∩ cin 3710   ⊆ wss 3711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-v 3338  df-un 3716  df-in 3718  df-ss 3725 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator