![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-fakeuninass | Structured version Visualization version GIF version |
Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by Richard Penner, 29-Feb-2020.) |
Ref | Expression |
---|---|
rp-fakeuninass | ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-fakeinunass 38359 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵 ∪ 𝐴))) | |
2 | eqcom 2763 | . 2 ⊢ (((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵 ∪ 𝐴)) ↔ (𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐶 ∩ 𝐵) ∪ 𝐴)) | |
3 | incom 3944 | . . . 4 ⊢ (𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐵 ∪ 𝐴) ∩ 𝐶) | |
4 | uncom 3896 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
5 | 4 | ineq1i 3949 | . . . 4 ⊢ ((𝐵 ∪ 𝐴) ∩ 𝐶) = ((𝐴 ∪ 𝐵) ∩ 𝐶) |
6 | 3, 5 | eqtri 2778 | . . 3 ⊢ (𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐴 ∪ 𝐵) ∩ 𝐶) |
7 | uncom 3896 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐶 ∩ 𝐵)) | |
8 | incom 3944 | . . . . 5 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
9 | 8 | uneq2i 3903 | . . . 4 ⊢ (𝐴 ∪ (𝐶 ∩ 𝐵)) = (𝐴 ∪ (𝐵 ∩ 𝐶)) |
10 | 7, 9 | eqtri 2778 | . . 3 ⊢ ((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐵 ∩ 𝐶)) |
11 | 6, 10 | eqeq12i 2770 | . 2 ⊢ ((𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐶 ∩ 𝐵) ∪ 𝐴) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) |
12 | 1, 2, 11 | 3bitri 286 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1628 ∪ cun 3709 ∩ cin 3710 ⊆ wss 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-v 3338 df-un 3716 df-in 3718 df-ss 3725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |