![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version |
Description: The range of a Cartesian product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5229 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 5661 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5432 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | dmxpss 5675 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
5 | 3, 4 | eqsstri 3741 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
6 | 1, 5 | eqsstri 3741 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3680 × cxp 5216 ◡ccnv 5217 dom cdm 5218 ran crn 5219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-dm 5228 df-rn 5229 |
This theorem is referenced by: ssxpb 5678 ssrnres 5682 funssxp 6174 fconst 6204 dff2 6486 dff3 6487 fliftf 6680 marypha1lem 8455 marypha1 8456 dfac12lem2 9079 brdom4 9465 nqerf 9865 xptrrel 13841 lern 17347 cnconst2 21210 lmss 21225 tsmsxplem1 22078 causs 23217 i1f0 23574 itg10 23575 taylf 24235 perpln2 25726 locfinref 30138 sitg0 30638 noextendseq 32047 heicant 33676 rntrclfvOAI 37673 rtrclex 38343 trclexi 38346 rtrclexi 38347 cnvtrcl0 38352 rntrcl 38354 brtrclfv2 38438 rp-imass 38484 xphe 38494 rfovcnvf1od 38717 |
Copyright terms: Public domain | W3C validator |