![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnun | Structured version Visualization version GIF version |
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 5696 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
2 | 1 | dmeqi 5480 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
3 | dmun 5486 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
4 | 2, 3 | eqtri 2782 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
5 | df-rn 5277 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
6 | df-rn 5277 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 5277 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | uneq12i 3908 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
9 | 4, 5, 8 | 3eqtr4i 2792 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∪ cun 3713 ◡ccnv 5265 dom cdm 5266 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: imaundi 5703 imaundir 5704 rnpropg 5774 fun 6227 foun 6316 fpr 6584 sbthlem6 8240 fodomr 8276 brwdom2 8643 ordtval 21195 axlowdimlem13 26033 ex-rn 27608 padct 29806 ffsrn 29813 locfinref 30217 esumrnmpt2 30439 noextend 32125 noextendseq 32126 ptrest 33721 rntrclfvOAI 37756 rclexi 38424 rtrclex 38426 rtrclexi 38430 cnvrcl0 38434 rntrcl 38437 dfrtrcl5 38438 dfrcl2 38468 rntrclfv 38526 rnresun 39861 |
Copyright terms: Public domain | W3C validator |