MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rntpos Structured version   Visualization version   GIF version

Theorem rntpos 7534
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3343 . . . . 5 𝑧 ∈ V
21elrn 5521 . . . 4 (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧)
3 vex 3343 . . . . . . . . 9 𝑤 ∈ V
43, 1breldm 5484 . . . . . . . 8 (𝑤tpos 𝐹𝑧𝑤 ∈ dom tpos 𝐹)
5 dmtpos 7533 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2825 . . . . . . . 8 (Rel dom 𝐹 → (𝑤 ∈ dom tpos 𝐹𝑤dom 𝐹))
74, 6syl5ib 234 . . . . . . 7 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑤dom 𝐹))
8 relcnv 5661 . . . . . . . 8 Rel dom 𝐹
9 elrel 5379 . . . . . . . 8 ((Rel dom 𝐹𝑤dom 𝐹) → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
108, 9mpan 708 . . . . . . 7 (𝑤dom 𝐹 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
117, 10syl6 35 . . . . . 6 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
12 breq1 4807 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
13 brtpos 7530 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
141, 13ax-mp 5 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1512, 14syl6bb 276 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
16 opex 5081 . . . . . . . . 9 𝑦, 𝑥⟩ ∈ V
1716, 1brelrn 5511 . . . . . . . 8 (⟨𝑦, 𝑥𝐹𝑧𝑧 ∈ ran 𝐹)
1815, 17syl6bi 243 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
1918exlimivv 2009 . . . . . 6 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2011, 19syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2120exlimdv 2010 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
222, 21syl5bi 232 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
231elrn 5521 . . . 4 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧)
243, 1breldm 5484 . . . . . . 7 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
25 elrel 5379 . . . . . . . 8 ((Rel dom 𝐹𝑤 ∈ dom 𝐹) → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩)
2625ex 449 . . . . . . 7 (Rel dom 𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
2724, 26syl5 34 . . . . . 6 (Rel dom 𝐹 → (𝑤𝐹𝑧 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
28 breq1 4807 . . . . . . . . 9 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2928, 14syl6bbr 278 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
30 opex 5081 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
3130, 1brelrn 5511 . . . . . . . 8 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧𝑧 ∈ ran tpos 𝐹)
3229, 31syl6bi 243 . . . . . . 7 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3332exlimivv 2009 . . . . . 6 (∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3427, 33syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3534exlimdv 2010 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3623, 35syl5bi 232 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran 𝐹𝑧 ∈ ran tpos 𝐹))
3722, 36impbid 202 . 2 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
3837eqrdv 2758 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wex 1853  wcel 2139  Vcvv 3340  cop 4327   class class class wbr 4804  ccnv 5265  dom cdm 5266  ran crn 5267  Rel wrel 5271  tpos ctpos 7520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057  df-tpos 7521
This theorem is referenced by:  tposfo2  7544  oppchofcl  17101  oyoncl  17111
  Copyright terms: Public domain W3C validator