![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnss | Structured version Visualization version GIF version |
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5327 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | dmss 5355 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
4 | df-rn 5154 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | df-rn 5154 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
6 | 3, 4, 5 | 3sstr4g 3679 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3607 ◡ccnv 5142 dom cdm 5143 ran crn 5144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: imass1 5535 imass2 5536 ssxpb 5603 ssrnres 5607 sofld 5616 funssxp 6099 fssres 6108 dff2 6411 dff3 6412 fliftf 6605 1stcof 7240 2ndcof 7241 frxp 7332 smores 7494 fodomfi 8280 marypha1lem 8380 marypha1 8381 dfac12lem2 9004 brdom4 9390 smobeth 9446 fpwwe2lem13 9502 nqerf 9790 prdsval 16162 prdsbas 16164 prdsplusg 16165 prdsmulr 16166 prdsvsca 16167 prdshom 16174 catcoppccl 16805 catcfuccl 16806 catcxpccl 16894 lern 17272 odf1o2 18034 gsumzres 18356 gsumzaddlem 18367 gsumzadd 18368 dprdfadd 18465 dprdres 18473 lmss 21150 txss12 21456 txbasval 21457 txkgen 21503 fmss 21797 tsmsxplem1 22003 ustimasn 22079 utopbas 22086 metustexhalf 22408 causs 23142 ovoliunlem1 23316 dvcnvrelem1 23825 taylf 24160 dvlog 24442 perpln2 25651 subgrprop3 26213 sspba 27710 imadifxp 29540 metideq 30064 sxbrsigalem5 30478 omsmon 30488 carsggect 30508 carsgclctunlem2 30509 fixssrn 32139 heicant 33574 mblfinlem1 33576 symrefref2 34447 dicval 36782 rntrclfvOAI 37571 diophrw 37639 dnnumch2 37932 lmhmlnmsplit 37974 hbtlem6 38016 mptrcllem 38237 cnvrcl0 38249 rntrcl 38252 dfrcl2 38283 relexpss1d 38314 rp-imass 38382 rfovcnvf1od 38615 rnresss 39679 supcnvlimsup 40290 fourierdlem42 40684 sge0less 40927 |
Copyright terms: Public domain | W3C validator |