![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnsnn0 | Structured version Visualization version GIF version |
Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) |
Ref | Expression |
---|---|
rnsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnn0 5635 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
2 | dm0rn0 5374 | . . 3 ⊢ (dom {𝐴} = ∅ ↔ ran {𝐴} = ∅) | |
3 | 2 | necon3bii 2875 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ran {𝐴} ≠ ∅) |
4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∅c0 3948 {csn 4210 × cxp 5141 dom cdm 5143 ran crn 5144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: 2ndnpr 7215 2nd2val 7239 |
Copyright terms: Public domain | W3C validator |