![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnresi | Structured version Visualization version GIF version |
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
rnresi | ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5267 | . 2 ⊢ ( I “ 𝐴) = ran ( I ↾ 𝐴) | |
2 | imai 5624 | . 2 ⊢ ( I “ 𝐴) = 𝐴 | |
3 | 1, 2 | eqtr3i 2772 | 1 ⊢ ran ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1620 I cid 5161 ran crn 5255 ↾ cres 5256 “ cima 5257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 |
This theorem is referenced by: resiima 5626 idssxp 6158 iordsmo 7611 dfac9 9121 relexprng 13956 relexpfld 13959 restid2 16264 sylow1lem2 18185 sylow3lem1 18213 lsslinds 20343 wilthlem3 24966 ausgrusgrb 26230 umgrres1lem 26372 umgrres1 26376 nbupgrres 26435 cusgrexilem2 26519 cusgrsize 26531 diophrw 37793 lnrfg 38160 rclexi 38393 rtrclex 38395 rtrclexi 38399 cnvrcl0 38403 dfrtrcl5 38407 dfrcl2 38437 brfvrcld2 38455 iunrelexp0 38465 relexpiidm 38467 relexp01min 38476 idhe 38552 dvsid 39001 fourierdlem60 40855 fourierdlem61 40856 uspgrsprfo 42235 |
Copyright terms: Public domain | W3C validator |