MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab Structured version   Visualization version   GIF version

Theorem rnoprab 6860
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 6818 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
21rneqi 5459 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
3 rnopab 5477 . 2 ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 exrot3 2158 . . . 4 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 opex 5037 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
65isseti 3313 . . . . . 6 𝑤 𝑤 = ⟨𝑥, 𝑦
7 19.41v 1990 . . . . . 6 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
86, 7mpbiran 991 . . . . 5 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
982exbii 1888 . . . 4 (∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
104, 9bitri 264 . . 3 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
1110abbii 2841 . 2 {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦𝜑}
122, 3, 113eqtri 2750 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1596  wex 1817  {cab 2710  cop 4291  {copab 4820  ran crn 5219  {coprab 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-br 4761  df-opab 4821  df-cnv 5226  df-dm 5228  df-rn 5229  df-oprab 6769
This theorem is referenced by:  rnoprab2  6861  elrnmpt2res  6891  ellines  32486
  Copyright terms: Public domain W3C validator