![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssbi | Structured version Visualization version GIF version |
Description: The range of an operation given by the "maps to" notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rnmptssbi.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssbi.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssbi.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
rnmptssbi | ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssbi.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssbi.2 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfmpt1 4899 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 2, 3 | nfcxfr 2900 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 |
5 | 4 | nfrn 5523 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6 | nfss 3737 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 ⊆ 𝐶 |
8 | 1, 7 | nfan 1977 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ran 𝐹 ⊆ 𝐶) |
9 | simplr 809 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ran 𝐹 ⊆ 𝐶) | |
10 | simpr 479 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | rnmptssbi.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | adantlr 753 | . . . . 5 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
13 | 2, 10, 12 | elrnmpt1d 39952 | . . . 4 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran 𝐹) |
14 | 9, 13 | sseldd 3745 | . . 3 ⊢ (((𝜑 ∧ ran 𝐹 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
15 | 8, 14 | ralrimia 39832 | . 2 ⊢ ((𝜑 ∧ ran 𝐹 ⊆ 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
16 | 2 | rnmptss 6556 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
17 | 16 | adantl 473 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ran 𝐹 ⊆ 𝐶) |
18 | 15, 17 | impbida 913 | 1 ⊢ (𝜑 → (ran 𝐹 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ↦ cmpt 4881 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 |
This theorem is referenced by: imassmpt 39998 |
Copyright terms: Public domain | W3C validator |