Step | Hyp | Ref
| Expression |
1 | | rnmptlb.1 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) |
2 | | breq1 4688 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) |
3 | 2 | ralbidv 3015 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
4 | 3 | cbvrexv 3202 |
. . . 4
⊢
(∃𝑦 ∈
ℝ ∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
5 | 1, 4 | sylib 208 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
6 | | vex 3234 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
7 | | eqid 2651 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
8 | 7 | elrnmpt 5404 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
9 | 6, 8 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
10 | 9 | biimpi 206 |
. . . . . . . . 9
⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
11 | 10 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
12 | | nfra1 2970 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 |
13 | | nfv 1883 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑤 ≤ 𝑧 |
14 | | rspa 2959 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑤 ≤ 𝐵) |
15 | 14 | 3adant3 1101 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑤 ≤ 𝐵) |
16 | | simp3 1083 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) |
17 | 15, 16 | breqtrrd 4713 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑤 ≤ 𝑧) |
18 | 17 | 3exp 1283 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ≤ 𝑧))) |
19 | 12, 13, 18 | rexlimd 3055 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ≤ 𝑧)) |
20 | 19 | imp 444 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝑤 ≤ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑤 ≤ 𝑧) |
21 | 20 | adantll 750 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑤 ≤ 𝑧) |
22 | 11, 21 | syldan 486 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ≤ 𝑧) |
23 | 22 | ralrimiva 2995 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧) |
24 | 23 | exp31 629 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ ℝ → (∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧))) |
25 | 24 | imp 444 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧)) |
26 | 25 | reximdva 3046 |
. . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧)) |
27 | 5, 26 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧) |
28 | | breq1 4688 |
. . . 4
⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝑧 ↔ 𝑦 ≤ 𝑧)) |
29 | 28 | ralbidv 3015 |
. . 3
⊢ (𝑤 = 𝑦 → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧)) |
30 | 29 | cbvrexv 3202 |
. 2
⊢
(∃𝑤 ∈
ℝ ∀𝑧 ∈
ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
31 | 27, 30 | sylib 208 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |