![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmpt2ss | Structured version Visualization version GIF version |
Description: The range of an operation given by the "maps to" notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.) |
Ref | Expression |
---|---|
rnmpt2ss.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
rnmpt2ss | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt2ss.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | rnmpt2 6936 | . . . 4 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
3 | 2 | abeq2i 2873 | . . 3 ⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) |
4 | simpl 474 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) | |
5 | simpr 479 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) | |
6 | 4, 5 | r19.29d2r 3218 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶)) |
7 | eleq1 2827 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
8 | 7 | biimparc 505 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷)) |
10 | 9 | rexlimivv 3174 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
11 | 6, 10 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
12 | 11 | ex 449 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
13 | 3, 12 | syl5bi 232 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ 𝐷)) |
14 | 13 | ssrdv 3750 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 ran crn 5267 ↦ cmpt2 6816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 df-oprab 6818 df-mpt2 6819 |
This theorem is referenced by: raddcn 30305 br2base 30661 sxbrsiga 30682 |
Copyright terms: Public domain | W3C validator |