![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt2 | Structured version Visualization version GIF version |
Description: The range of an operation given by the "maps to" notation. (Contributed by FL, 20-Jun-2011.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
rnmpt2 | ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | df-mpt2 6818 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | eqtri 2782 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | 3 | rneqi 5507 | . 2 ⊢ ran 𝐹 = ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | rnoprab2 6909 | . 2 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} | |
6 | 4, 5 | eqtri 2782 | 1 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 ∃wrex 3051 ran crn 5267 {coprab 6814 ↦ cmpt2 6815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 df-oprab 6817 df-mpt2 6818 |
This theorem is referenced by: elrnmpt2g 6937 elrnmpt2 6938 ralrnmpt2 6940 dffi3 8502 ixpiunwdom 8661 qnnen 15141 txuni2 21570 txbas 21572 xkobval 21591 xkoopn 21594 txrest 21636 ptrescn 21644 tx1stc 21655 xkoptsub 21659 xkopt 21660 xkococn 21665 ptcmplem4 22060 met2ndci 22528 i1fadd 23661 i1fmul 23662 rnmpt2ss 29782 cnre2csqima 30266 qqhval2 30335 scutf 32225 icoreresf 33511 ptrest 33721 eldiophb 37822 |
Copyright terms: Public domain | W3C validator |