![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5521 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 4878 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2778 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5503 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3052 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2873 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2788 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1628 ∃wex 1849 ∈ wcel 2135 {cab 2742 ∃wrex 3047 {copab 4860 ↦ cmpt 4877 ran crn 5263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-rex 3052 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4801 df-opab 4861 df-mpt 4878 df-cnv 5270 df-dm 5272 df-rn 5273 |
This theorem is referenced by: elrnmpt 5523 elrnmpt1 5525 elrnmptg 5526 dfiun3g 5529 dfiin3g 5530 fnrnfv 6400 fmpt 6540 fnasrn 6570 fliftf 6724 abrexexg 7301 abrexexOLD 7303 fo1st 7349 fo2nd 7350 qliftf 7998 abrexfi 8427 iinfi 8484 tz9.12lem1 8819 infmap2 9228 cfslb2n 9278 fin23lem29 9351 fin23lem30 9352 fin1a2lem11 9420 ac6num 9489 rankcf 9787 tskuni 9793 negfi 11159 4sqlem11 15857 4sqlem12 15858 vdwapval 15875 vdwlem6 15888 quslem 16401 conjnmzb 17892 pmtrprfvalrn 18104 sylow1lem2 18210 sylow3lem1 18238 sylow3lem2 18239 rnascl 19541 ellspd 20339 iinopn 20905 restco 21166 pnrmopn 21345 cncmp 21393 discmp 21399 comppfsc 21533 alexsublem 22045 ptcmplem3 22055 snclseqg 22116 prdsxmetlem 22370 prdsbl 22493 xrhmeo 22942 pi1xfrf 23049 pi1cof 23055 iunmbl 23517 voliun 23518 itg1addlem4 23661 i1fmulc 23665 mbfi1fseqlem4 23680 itg2monolem1 23712 aannenlem2 24279 2lgslem1b 25312 mptelee 25970 disjrnmpt 29701 ofrn2 29747 abrexct 29799 abrexctf 29801 esumc 30418 esumrnmpt 30419 carsgclctunlem3 30687 eulerpartlemt 30738 bdayfo 32130 nosupno 32151 fobigcup 32309 ptrest 33717 areacirclem2 33810 istotbnd3 33879 sstotbnd 33883 rmxypairf1o 37974 hbtlem6 38197 elrnmptf 39862 fnrnafv 41744 fargshiftfo 41884 |
Copyright terms: Public domain | W3C validator |