Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rniun Structured version   Visualization version   GIF version

Theorem rniun 5684
 Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵

Proof of Theorem rniun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3374 . . . 4 (∃𝑥𝐴𝑦𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑦𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3352 . . . . . 6 𝑧 ∈ V
32elrn2 5503 . . . . 5 (𝑧 ∈ ran 𝐵 ↔ ∃𝑦𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3188 . . . 4 (∃𝑥𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥𝐴𝑦𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4656 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1923 . . . 4 (∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑦𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 293 . . 3 (∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧 ∈ ran 𝐵)
82elrn2 5503 . . 3 (𝑧 ∈ ran 𝑥𝐴 𝐵 ↔ ∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4656 . . 3 (𝑧 𝑥𝐴 ran 𝐵 ↔ ∃𝑥𝐴 𝑧 ∈ ran 𝐵)
107, 8, 93bitr4i 292 . 2 (𝑧 ∈ ran 𝑥𝐴 𝐵𝑧 𝑥𝐴 ran 𝐵)
1110eqriv 2767 1 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
 Colors of variables: wff setvar class Syntax hints:   = wceq 1630  ∃wex 1851   ∈ wcel 2144  ∃wrex 3061  ⟨cop 4320  ∪ ciun 4652  ran crn 5250 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-iun 4654  df-br 4785  df-opab 4845  df-cnv 5257  df-dm 5259  df-rn 5260 This theorem is referenced by:  rnuni  5685  fun11iun  7272  cnextf  22089  iunrelexp0  38513
 Copyright terms: Public domain W3C validator