Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Structured version   Visualization version   GIF version

Theorem rngunsnply 38264
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b (𝜑𝐵 ∈ (SubRing‘ℂfld))
rngunsnply.x (𝜑𝑋 ∈ ℂ)
rngunsnply.s (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
Assertion
Ref Expression
rngunsnply (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Distinct variable groups:   𝜑,𝑝   𝐵,𝑝   𝑋,𝑝   𝑉,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem rngunsnply
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3 (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
21eleq2d 2826 . 2 (𝜑 → (𝑉𝑆𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
3 cnring 19991 . . . . . . 7 fld ∈ Ring
43a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ Ring)
5 cnfldbas 19973 . . . . . . 7 ℂ = (Base‘ℂfld)
65a1i 11 . . . . . 6 (𝜑 → ℂ = (Base‘ℂfld))
7 rngunsnply.b . . . . . . . 8 (𝜑𝐵 ∈ (SubRing‘ℂfld))
85subrgss 19004 . . . . . . . 8 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ⊆ ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐵 ⊆ ℂ)
10 rngunsnply.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
1110snssd 4486 . . . . . . 7 (𝜑 → {𝑋} ⊆ ℂ)
129, 11unssd 3933 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ℂ)
13 eqidd 2762 . . . . . 6 (𝜑 → (RingSpan‘ℂfld) = (RingSpan‘ℂfld))
14 eqidd 2762 . . . . . 6 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
15 eqidd 2762 . . . . . . 7 (𝜑 → (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) = (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
16 cnfld0 19993 . . . . . . . 8 0 = (0g‘ℂfld)
1716a1i 11 . . . . . . 7 (𝜑 → 0 = (0g‘ℂfld))
18 cnfldadd 19974 . . . . . . . 8 + = (+g‘ℂfld)
1918a1i 11 . . . . . . 7 (𝜑 → + = (+g‘ℂfld))
20 plyf 24174 . . . . . . . . . . . 12 (𝑝 ∈ (Poly‘𝐵) → 𝑝:ℂ⟶ℂ)
21 ffvelrn 6522 . . . . . . . . . . . 12 ((𝑝:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑝𝑋) ∈ ℂ)
2220, 10, 21syl2anr 496 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ℂ)
23 eleq1 2828 . . . . . . . . . . 11 (𝑎 = (𝑝𝑋) → (𝑎 ∈ ℂ ↔ (𝑝𝑋) ∈ ℂ))
2422, 23syl5ibrcom 237 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2524rexlimdva 3170 . . . . . . . . 9 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2625ss2abdv 3817 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ {𝑎𝑎 ∈ ℂ})
27 abid2 2884 . . . . . . . . 9 {𝑎𝑎 ∈ ℂ} = ℂ
2827, 5eqtri 2783 . . . . . . . 8 {𝑎𝑎 ∈ ℂ} = (Base‘ℂfld)
2926, 28syl6sseq 3793 . . . . . . 7 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ (Base‘ℂfld))
30 abid2 2884 . . . . . . . . 9 {𝑎𝑎𝐵} = 𝐵
31 plyconst 24182 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℂ ∧ 𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
329, 31sylan 489 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
3310adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑋 ∈ ℂ)
34 vex 3344 . . . . . . . . . . . . . . 15 𝑎 ∈ V
3534fvconst2 6635 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3633, 35syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3736eqcomd 2767 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎 = ((ℂ × {𝑎})‘𝑋))
38 fveq1 6353 . . . . . . . . . . . . . 14 (𝑝 = (ℂ × {𝑎}) → (𝑝𝑋) = ((ℂ × {𝑎})‘𝑋))
3938eqeq2d 2771 . . . . . . . . . . . . 13 (𝑝 = (ℂ × {𝑎}) → (𝑎 = (𝑝𝑋) ↔ 𝑎 = ((ℂ × {𝑎})‘𝑋)))
4039rspcev 3450 . . . . . . . . . . . 12 (((ℂ × {𝑎}) ∈ (Poly‘𝐵) ∧ 𝑎 = ((ℂ × {𝑎})‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4132, 37, 40syl2anc 696 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4241ex 449 . . . . . . . . . 10 (𝜑 → (𝑎𝐵 → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)))
4342ss2abdv 3817 . . . . . . . . 9 (𝜑 → {𝑎𝑎𝐵} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
4430, 43syl5eqssr 3792 . . . . . . . 8 (𝜑𝐵 ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
45 subrgsubg 19009 . . . . . . . . . 10 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ∈ (SubGrp‘ℂfld))
467, 45syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (SubGrp‘ℂfld))
4716subg0cl 17824 . . . . . . . . 9 (𝐵 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝐵)
4846, 47syl 17 . . . . . . . 8 (𝜑 → 0 ∈ 𝐵)
4944, 48sseldd 3746 . . . . . . 7 (𝜑 → 0 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
50 biid 251 . . . . . . . . 9 (𝜑𝜑)
51 vex 3344 . . . . . . . . . 10 𝑏 ∈ V
52 eqeq1 2765 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎 = (𝑝𝑋) ↔ 𝑏 = (𝑝𝑋)))
5352rexbidv 3191 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋)))
54 fveq1 6353 . . . . . . . . . . . . 13 (𝑝 = 𝑒 → (𝑝𝑋) = (𝑒𝑋))
5554eqeq2d 2771 . . . . . . . . . . . 12 (𝑝 = 𝑒 → (𝑏 = (𝑝𝑋) ↔ 𝑏 = (𝑒𝑋)))
5655cbvrexv 3312 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
5753, 56syl6bb 276 . . . . . . . . . 10 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)))
5851, 57elab 3491 . . . . . . . . 9 (𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
59 vex 3344 . . . . . . . . . 10 𝑐 ∈ V
60 eqeq1 2765 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎 = (𝑝𝑋) ↔ 𝑐 = (𝑝𝑋)))
6160rexbidv 3191 . . . . . . . . . . 11 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋)))
62 fveq1 6353 . . . . . . . . . . . . 13 (𝑝 = 𝑑 → (𝑝𝑋) = (𝑑𝑋))
6362eqeq2d 2771 . . . . . . . . . . . 12 (𝑝 = 𝑑 → (𝑐 = (𝑝𝑋) ↔ 𝑐 = (𝑑𝑋)))
6463cbvrexv 3312 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
6561, 64syl6bb 276 . . . . . . . . . 10 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)))
6659, 65elab 3491 . . . . . . . . 9 (𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
67 simplr 809 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
68 simpr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 ∈ (Poly‘𝐵))
6918subrgacl 19014 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 + 𝑏) ∈ 𝐵)
70693expb 1114 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
717, 70sylan 489 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7271adantlr 753 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7372adantlr 753 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7467, 68, 73plyadd 24193 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒𝑓 + 𝑑) ∈ (Poly‘𝐵))
75 plyf 24174 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ (Poly‘𝐵) → 𝑒:ℂ⟶ℂ)
76 ffn 6207 . . . . . . . . . . . . . . . . . . 19 (𝑒:ℂ⟶ℂ → 𝑒 Fn ℂ)
7775, 76syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (Poly‘𝐵) → 𝑒 Fn ℂ)
7877ad2antlr 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
79 plyf 24174 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (Poly‘𝐵) → 𝑑:ℂ⟶ℂ)
80 ffn 6207 . . . . . . . . . . . . . . . . . . 19 (𝑑:ℂ⟶ℂ → 𝑑 Fn ℂ)
8179, 80syl 17 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (Poly‘𝐵) → 𝑑 Fn ℂ)
8281adantl 473 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 Fn ℂ)
83 cnex 10230 . . . . . . . . . . . . . . . . . 18 ℂ ∈ V
8483a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ℂ ∈ V)
8510ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
86 fnfvof 7078 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒𝑓 + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8778, 82, 84, 85, 86syl22anc 1478 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑓 + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8887eqcomd 2767 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋))
89 fveq1 6353 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑒𝑓 + 𝑑) → (𝑝𝑋) = ((𝑒𝑓 + 𝑑)‘𝑋))
9089eqeq2d 2771 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒𝑓 + 𝑑) → (((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋)))
9190rspcev 3450 . . . . . . . . . . . . . . 15 (((𝑒𝑓 + 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
9274, 88, 91syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
93 oveq2 6823 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) + 𝑐) = ((𝑒𝑋) + (𝑑𝑋)))
9493eqeq1d 2763 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9594rexbidv 3191 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9692, 95syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
9796rexlimdva 3170 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
98 oveq1 6822 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 + 𝑐) = ((𝑒𝑋) + 𝑐))
9998eqeq1d 2763 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
10099rexbidv 3191 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
101100imbi2d 329 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋))))
10297, 101syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
103102rexlimdva 3170 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
1041033imp 1102 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
10550, 58, 66, 104syl3anb 1165 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
106 ovex 6843 . . . . . . . . 9 (𝑏 + 𝑐) ∈ V
107 eqeq1 2765 . . . . . . . . . 10 (𝑎 = (𝑏 + 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 + 𝑐) = (𝑝𝑋)))
108107rexbidv 3191 . . . . . . . . 9 (𝑎 = (𝑏 + 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)))
109106, 108elab 3491 . . . . . . . 8 ((𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
110105, 109sylibr 224 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
111 ax-1cn 10207 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
112 cnfldneg 19995 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
113111, 112mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) = -1)
114 cnfld1 19994 . . . . . . . . . . . . . . . . . . . 20 1 = (1r‘ℂfld)
115114subrg1cl 19011 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐵)
1167, 115syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ 𝐵)
117 eqid 2761 . . . . . . . . . . . . . . . . . . 19 (invg‘ℂfld) = (invg‘ℂfld)
118117subginvcl 17825 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐵) → ((invg‘ℂfld)‘1) ∈ 𝐵)
11946, 116, 118syl2anc 696 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐵)
120113, 119eqeltrrd 2841 . . . . . . . . . . . . . . . 16 (𝜑 → -1 ∈ 𝐵)
121 plyconst 24182 . . . . . . . . . . . . . . . 16 ((𝐵 ⊆ ℂ ∧ -1 ∈ 𝐵) → (ℂ × {-1}) ∈ (Poly‘𝐵))
1229, 120, 121syl2anc 696 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ × {-1}) ∈ (Poly‘𝐵))
123122adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) ∈ (Poly‘𝐵))
124 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
125 cnfldmul 19975 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
126125subrgmcl 19015 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
1271263expb 1114 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
1287, 127sylan 489 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
129128adantlr 753 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
130123, 124, 72, 129plymul 24194 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1}) ∘𝑓 · 𝑒) ∈ (Poly‘𝐵))
131 ffvelrn 6522 . . . . . . . . . . . . . . . 16 ((𝑒:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑒𝑋) ∈ ℂ)
13275, 10, 131syl2anr 496 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑒𝑋) ∈ ℂ)
133 cnfldneg 19995 . . . . . . . . . . . . . . 15 ((𝑒𝑋) ∈ ℂ → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
134132, 133syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
135 negex 10492 . . . . . . . . . . . . . . . . 17 -1 ∈ V
136 fnconstg 6255 . . . . . . . . . . . . . . . . 17 (-1 ∈ V → (ℂ × {-1}) Fn ℂ)
137135, 136mp1i 13 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) Fn ℂ)
13877adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
13983a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ℂ ∈ V)
14010adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
141 fnfvof 7078 . . . . . . . . . . . . . . . 16 ((((ℂ × {-1}) Fn ℂ ∧ 𝑒 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
142137, 138, 139, 140, 141syl22anc 1478 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
143135fvconst2 6635 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℂ → ((ℂ × {-1})‘𝑋) = -1)
144140, 143syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1})‘𝑋) = -1)
145144oveq1d 6830 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1})‘𝑋) · (𝑒𝑋)) = (-1 · (𝑒𝑋)))
146132mulm1d 10695 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (-1 · (𝑒𝑋)) = -(𝑒𝑋))
147142, 145, 1463eqtrd 2799 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = -(𝑒𝑋))
148134, 147eqtr4d 2798 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋))
149 fveq1 6353 . . . . . . . . . . . . . . 15 (𝑝 = ((ℂ × {-1}) ∘𝑓 · 𝑒) → (𝑝𝑋) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋))
150149eqeq2d 2771 . . . . . . . . . . . . . 14 (𝑝 = ((ℂ × {-1}) ∘𝑓 · 𝑒) → (((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋)))
151150rspcev 3450 . . . . . . . . . . . . 13 ((((ℂ × {-1}) ∘𝑓 · 𝑒) ∈ (Poly‘𝐵) ∧ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
152130, 148, 151syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
153 fveq2 6354 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((invg‘ℂfld)‘𝑏) = ((invg‘ℂfld)‘(𝑒𝑋)))
154153eqeq1d 2763 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
155154rexbidv 3191 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
156152, 155syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
157156rexlimdva 3170 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
158157imp 444 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
15958, 158sylan2b 493 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
160 fvex 6364 . . . . . . . . 9 ((invg‘ℂfld)‘𝑏) ∈ V
161 eqeq1 2765 . . . . . . . . . 10 (𝑎 = ((invg‘ℂfld)‘𝑏) → (𝑎 = (𝑝𝑋) ↔ ((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
162161rexbidv 3191 . . . . . . . . 9 (𝑎 = ((invg‘ℂfld)‘𝑏) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
163160, 162elab 3491 . . . . . . . 8 (((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
164159, 163sylibr 224 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
165114a1i 11 . . . . . . 7 (𝜑 → 1 = (1r‘ℂfld))
166125a1i 11 . . . . . . 7 (𝜑 → · = (.r‘ℂfld))
16744, 116sseldd 3746 . . . . . . 7 (𝜑 → 1 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
168129adantlr 753 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
16967, 68, 73, 168plymul 24194 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒𝑓 · 𝑑) ∈ (Poly‘𝐵))
170 fnfvof 7078 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒𝑓 · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
17178, 82, 84, 85, 170syl22anc 1478 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑓 · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
172171eqcomd 2767 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋))
173 fveq1 6353 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑒𝑓 · 𝑑) → (𝑝𝑋) = ((𝑒𝑓 · 𝑑)‘𝑋))
174173eqeq2d 2771 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒𝑓 · 𝑑) → (((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋)))
175174rspcev 3450 . . . . . . . . . . . . . . 15 (((𝑒𝑓 · 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
176169, 172, 175syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
177 oveq2 6823 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) · 𝑐) = ((𝑒𝑋) · (𝑑𝑋)))
178177eqeq1d 2763 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
179178rexbidv 3191 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
180176, 179syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
181180rexlimdva 3170 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
182 oveq1 6822 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 · 𝑐) = ((𝑒𝑋) · 𝑐))
183182eqeq1d 2763 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
184183rexbidv 3191 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
185184imbi2d 329 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋))))
186181, 185syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
187186rexlimdva 3170 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
1881873imp 1102 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
18950, 58, 66, 188syl3anb 1165 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
190 ovex 6843 . . . . . . . . 9 (𝑏 · 𝑐) ∈ V
191 eqeq1 2765 . . . . . . . . . 10 (𝑎 = (𝑏 · 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 · 𝑐) = (𝑝𝑋)))
192191rexbidv 3191 . . . . . . . . 9 (𝑎 = (𝑏 · 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)))
193190, 192elab 3491 . . . . . . . 8 ((𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
194189, 193sylibr 224 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
19515, 17, 19, 29, 49, 110, 164, 165, 166, 167, 194, 4issubrngd2 19412 . . . . . 6 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∈ (SubRing‘ℂfld))
196 plyid 24185 . . . . . . . . . . 11 ((𝐵 ⊆ ℂ ∧ 1 ∈ 𝐵) → Xp ∈ (Poly‘𝐵))
1979, 116, 196syl2anc 696 . . . . . . . . . 10 (𝜑Xp ∈ (Poly‘𝐵))
198 df-idp 24165 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
199198fveq1i 6355 . . . . . . . . . . 11 (Xp𝑋) = (( I ↾ ℂ)‘𝑋)
200 fvresi 6605 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (( I ↾ ℂ)‘𝑋) = 𝑋)
20110, 200syl 17 . . . . . . . . . . 11 (𝜑 → (( I ↾ ℂ)‘𝑋) = 𝑋)
202199, 201syl5req 2808 . . . . . . . . . 10 (𝜑𝑋 = (Xp𝑋))
203 fveq1 6353 . . . . . . . . . . . 12 (𝑝 = Xp → (𝑝𝑋) = (Xp𝑋))
204203eqeq2d 2771 . . . . . . . . . . 11 (𝑝 = Xp → (𝑋 = (𝑝𝑋) ↔ 𝑋 = (Xp𝑋)))
205204rspcev 3450 . . . . . . . . . 10 ((Xp ∈ (Poly‘𝐵) ∧ 𝑋 = (Xp𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
206197, 202, 205syl2anc 696 . . . . . . . . 9 (𝜑 → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
207 eqeq1 2765 . . . . . . . . . . . 12 (𝑎 = 𝑋 → (𝑎 = (𝑝𝑋) ↔ 𝑋 = (𝑝𝑋)))
208207rexbidv 3191 . . . . . . . . . . 11 (𝑎 = 𝑋 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
209208elabg 3492 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
21010, 209syl 17 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
211206, 210mpbird 247 . . . . . . . 8 (𝜑𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
212211snssd 4486 . . . . . . 7 (𝜑 → {𝑋} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
21344, 212unssd 3933 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
2144, 6, 12, 13, 14, 195, 213rgspnmin 38262 . . . . 5 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
215214sseld 3744 . . . 4 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → 𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
216 fvex 6364 . . . . . . 7 (𝑝𝑋) ∈ V
217 eleq1 2828 . . . . . . 7 (𝑉 = (𝑝𝑋) → (𝑉 ∈ V ↔ (𝑝𝑋) ∈ V))
218216, 217mpbiri 248 . . . . . 6 (𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
219218rexlimivw 3168 . . . . 5 (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
220 eqeq1 2765 . . . . . 6 (𝑎 = 𝑉 → (𝑎 = (𝑝𝑋) ↔ 𝑉 = (𝑝𝑋)))
221220rexbidv 3191 . . . . 5 (𝑎 = 𝑉 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
222219, 221elab3 3499 . . . 4 (𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋))
223215, 222syl6ib 241 . . 3 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2244, 6, 12, 13, 14rgspncl 38260 . . . . . . 7 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
225224adantr 472 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
226 simpr 479 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑝 ∈ (Poly‘𝐵))
2274, 6, 12, 13, 14rgspnssid 38261 . . . . . . . . 9 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
228227unssbd 3935 . . . . . . . 8 (𝜑 → {𝑋} ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
229 snidg 4352 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ {𝑋})
23010, 229syl 17 . . . . . . . 8 (𝜑𝑋 ∈ {𝑋})
231228, 230sseldd 3746 . . . . . . 7 (𝜑𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
232231adantr 472 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
233227unssad 3934 . . . . . . 7 (𝜑𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
234233adantr 472 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
235225, 226, 232, 234cnsrplycl 38258 . . . . 5 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
236 eleq1 2828 . . . . 5 (𝑉 = (𝑝𝑋) → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
237235, 236syl5ibrcom 237 . . . 4 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
238237rexlimdva 3170 . . 3 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
239223, 238impbid 202 . 2 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2402, 239bitrd 268 1 (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  {cab 2747  wrex 3052  Vcvv 3341  cun 3714  wss 3716  {csn 4322   I cid 5174   × cxp 5265  cres 5269   Fn wfn 6045  wf 6046  cfv 6050  (class class class)co 6815  𝑓 cof 7062  cc 10147  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  -cneg 10480  Basecbs 16080  s cress 16081  +gcplusg 16164  .rcmulr 16165  0gc0g 16323  invgcminusg 17645  SubGrpcsubg 17810  1rcur 18722  Ringcrg 18768  SubRingcsubrg 18999  RingSpancrgspn 19000  fldccnfld 19969  Polycply 24160  Xpcidp 24161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-rlim 14440  df-sum 14637  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-subg 17813  df-cmn 18416  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-subrg 19001  df-rgspn 19002  df-cnfld 19970  df-0p 23657  df-ply 24164  df-idp 24165  df-coe 24166  df-dgr 24167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator