Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosubdi Structured version   Visualization version   GIF version

Theorem rngosubdi 34076
Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringsubdi.1 𝐺 = (1st𝑅)
ringsubdi.2 𝐻 = (2nd𝑅)
ringsubdi.3 𝑋 = ran 𝐺
ringsubdi.4 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
rngosubdi ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)))

Proof of Theorem rngosubdi
StepHypRef Expression
1 ringsubdi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringsubdi.3 . . . . 5 𝑋 = ran 𝐺
3 eqid 2771 . . . . 5 (inv‘𝐺) = (inv‘𝐺)
4 ringsubdi.4 . . . . 5 𝐷 = ( /𝑔𝐺)
51, 2, 3, 4rngosub 34061 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
653adant3r1 1197 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐷𝐶) = (𝐵𝐺((inv‘𝐺)‘𝐶)))
76oveq2d 6809 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))))
8 ringsubdi.2 . . . . . . 7 𝐻 = (2nd𝑅)
91, 8, 2rngocl 34032 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
1093adant3r3 1199 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
111, 8, 2rngocl 34032 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
12113adant3r2 1198 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
1310, 12jca 501 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋))
141, 2, 3, 4rngosub 34061 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
15143expb 1113 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
1613, 15syldan 579 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
17 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐴𝑋𝐴𝑋))
18 idd 24 . . . . . . 7 (𝑅 ∈ RingOps → (𝐵𝑋𝐵𝑋))
191, 2, 3rngonegcl 34058 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐶𝑋) → ((inv‘𝐺)‘𝐶) ∈ 𝑋)
2019ex 397 . . . . . . 7 (𝑅 ∈ RingOps → (𝐶𝑋 → ((inv‘𝐺)‘𝐶) ∈ 𝑋))
2117, 18, 203anim123d 1554 . . . . . 6 (𝑅 ∈ RingOps → ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)))
2221imp 393 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋))
231, 8, 2rngodi 34035 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋 ∧ ((inv‘𝐺)‘𝐶) ∈ 𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
2422, 23syldan 579 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
251, 8, 2, 3rngonegrmul 34075 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → ((inv‘𝐺)‘(𝐴𝐻𝐶)) = (𝐴𝐻((inv‘𝐺)‘𝐶)))
26253adant3r2 1198 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((inv‘𝐺)‘(𝐴𝐻𝐶)) = (𝐴𝐻((inv‘𝐺)‘𝐶)))
2726oveq2d 6809 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻((inv‘𝐺)‘𝐶))))
2824, 27eqtr4d 2808 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))) = ((𝐴𝐻𝐵)𝐺((inv‘𝐺)‘(𝐴𝐻𝐶))))
2916, 28eqtr4d 2808 . 2 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)) = (𝐴𝐻(𝐵𝐺((inv‘𝐺)‘𝐶))))
307, 29eqtr4d 2808 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐷𝐶)) = ((𝐴𝐻𝐵)𝐷(𝐴𝐻𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  ran crn 5250  cfv 6031  (class class class)co 6793  1st c1st 7313  2nd c2nd 7314  invcgn 27685   /𝑔 cgs 27686  RingOpscrngo 34025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-ass 33974  df-exid 33976  df-mgmOLD 33980  df-sgrOLD 33992  df-mndo 33998  df-rngo 34026
This theorem is referenced by:  dmncan1  34207
  Copyright terms: Public domain W3C validator