Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn6 Structured version   Visualization version   GIF version

Theorem rngosn6 34050
Description: Obsolete as of 25-Jan-2020. Use ringen1zr 19491 or srgen1zr 18737 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
on1el3.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngosn6 (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))

Proof of Theorem rngosn6
StepHypRef Expression
1 on1el3.1 . . 3 𝐺 = (1st𝑅)
2 on1el3.2 . . 3 𝑋 = ran 𝐺
3 on1el3.3 . . 3 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 34043 . 2 (𝑅 ∈ RingOps → 𝑍𝑋)
51, 2rngosn4 34049 . 2 ((𝑅 ∈ RingOps ∧ 𝑍𝑋) → (𝑋 ≈ 1𝑜𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
64, 5mpdan 659 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1630  wcel 2144  {csn 4314  cop 4320   class class class wbr 4784  ran crn 5250  cfv 6031  1st c1st 7312  1𝑜c1o 7705  cen 8105  GIdcgi 27678  RingOpscrngo 34018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-om 7212  df-1st 7314  df-2nd 7315  df-1o 7712  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-grpo 27681  df-gid 27682  df-ablo 27733  df-rngo 34019
This theorem is referenced by:  dvrunz  34078
  Copyright terms: Public domain W3C validator