![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoridm | Structured version Visualization version GIF version |
Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
uridm2.2 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngoridm | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑈) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uridm.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | uridm.2 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
3 | uridm2.2 | . . 3 ⊢ 𝑈 = (GId‘𝐻) | |
4 | 1, 2, 3 | rngoidmlem 34060 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
5 | 4 | simprd 477 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑈) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ran crn 5250 ‘cfv 6031 (class class class)co 6792 1st c1st 7312 2nd c2nd 7313 GIdcgi 27678 RingOpscrngo 34018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fo 6037 df-fv 6039 df-riota 6753 df-ov 6795 df-1st 7314 df-2nd 7315 df-grpo 27681 df-gid 27682 df-ablo 27733 df-ass 33967 df-exid 33969 df-mgmOLD 33973 df-sgrOLD 33985 df-mndo 33991 df-rngo 34019 |
This theorem is referenced by: rngoueqz 34064 rngonegmn1r 34066 |
Copyright terms: Public domain | W3C validator |