Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegrmul Structured version   Visualization version   GIF version

Theorem rngonegrmul 34068
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st𝑅)
ringnegmul.2 𝐻 = (2nd𝑅)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
rngonegrmul ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁𝐵)))

Proof of Theorem rngonegrmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5490 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2792 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd𝑅)
6 eqid 2770 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
74, 5, 6rngo1cl 34063 . . . . 5 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 34051 . . . . 5 ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
107, 9mpdan 659 . . . 4 (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
112, 5, 1rngoass 34030 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋 ∧ (𝑁‘(GId‘𝐻)) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
12113exp2 1446 . . . . . 6 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1312com24 95 . . . . 5 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1413com34 91 . . . 4 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1510, 14mpd 15 . . 3 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))))
16153imp 1100 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
172, 5, 1rngocl 34025 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
18173expb 1112 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
192, 5, 1, 8, 6rngonegmn1r 34066 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
2018, 19syldan 571 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
21203impb 1106 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
222, 5, 1, 8, 6rngonegmn1r 34066 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑁𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻))))
23223adant2 1124 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻))))
2423oveq2d 6808 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻(𝑁𝐵)) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
2516, 21, 243eqtr4d 2814 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  ran crn 5250  cfv 6031  (class class class)co 6792  1st c1st 7312  2nd c2nd 7313  GIdcgi 27678  invcgn 27679  RingOpscrngo 34018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-1st 7314  df-2nd 7315  df-grpo 27681  df-gid 27682  df-ginv 27683  df-ablo 27733  df-ass 33967  df-exid 33969  df-mgmOLD 33973  df-sgrOLD 33985  df-mndo 33991  df-rngo 34019
This theorem is referenced by:  rngosubdi  34069
  Copyright terms: Public domain W3C validator