Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoideu Structured version   Visualization version   GIF version

Theorem rngoideu 33934
Description: The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoideu (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝐻,𝑥   𝑢,𝑋,𝑥   𝑢,𝑅,𝑥

Proof of Theorem rngoideu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5 𝐺 = (1st𝑅)
2 ringi.2 . . . . 5 𝐻 = (2nd𝑅)
3 ringi.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3rngoi 33930 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑢𝑋𝑥𝑋𝑦𝑋 (((𝑢𝐻𝑥)𝐻𝑦) = (𝑢𝐻(𝑥𝐻𝑦)) ∧ (𝑢𝐻(𝑥𝐺𝑦)) = ((𝑢𝐻𝑥)𝐺(𝑢𝐻𝑦)) ∧ ((𝑢𝐺𝑥)𝐻𝑦) = ((𝑢𝐻𝑦)𝐺(𝑥𝐻𝑦))) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))))
54simprrd 814 . . 3 (𝑅 ∈ RingOps → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
6 simpl 474 . . . . . . . 8 (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑥) = 𝑥)
76ralimi 3054 . . . . . . 7 (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → ∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥)
8 oveq2 6773 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑢𝐻𝑥) = (𝑢𝐻𝑦))
9 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
108, 9eqeq12d 2739 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑦))
1110rspcv 3409 . . . . . . 7 (𝑦𝑋 → (∀𝑥𝑋 (𝑢𝐻𝑥) = 𝑥 → (𝑢𝐻𝑦) = 𝑦))
127, 11syl5 34 . . . . . 6 (𝑦𝑋 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → (𝑢𝐻𝑦) = 𝑦))
13 simpr 479 . . . . . . . 8 (((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑥𝐻𝑦) = 𝑥)
1413ralimi 3054 . . . . . . 7 (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → ∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥)
15 oveq1 6772 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥𝐻𝑦) = (𝑢𝐻𝑦))
16 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
1715, 16eqeq12d 2739 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥𝐻𝑦) = 𝑥 ↔ (𝑢𝐻𝑦) = 𝑢))
1817rspcv 3409 . . . . . . 7 (𝑢𝑋 → (∀𝑥𝑋 (𝑥𝐻𝑦) = 𝑥 → (𝑢𝐻𝑦) = 𝑢))
1914, 18syl5 34 . . . . . 6 (𝑢𝑋 → (∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥) → (𝑢𝐻𝑦) = 𝑢))
2012, 19im2anan9r 917 . . . . 5 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → ((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢)))
21 eqtr2 2744 . . . . . 6 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑦 = 𝑢)
2221eqcomd 2730 . . . . 5 (((𝑢𝐻𝑦) = 𝑦 ∧ (𝑢𝐻𝑦) = 𝑢) → 𝑢 = 𝑦)
2320, 22syl6 35 . . . 4 ((𝑢𝑋𝑦𝑋) → ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦))
2423rgen2a 3079 . . 3 𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)
255, 24jctir 562 . 2 (𝑅 ∈ RingOps → (∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)))
26 oveq1 6772 . . . . . 6 (𝑢 = 𝑦 → (𝑢𝐻𝑥) = (𝑦𝐻𝑥))
2726eqeq1d 2726 . . . . 5 (𝑢 = 𝑦 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑦𝐻𝑥) = 𝑥))
28 oveq2 6773 . . . . . 6 (𝑢 = 𝑦 → (𝑥𝐻𝑢) = (𝑥𝐻𝑦))
2928eqeq1d 2726 . . . . 5 (𝑢 = 𝑦 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝑥𝐻𝑦) = 𝑥))
3027, 29anbi12d 749 . . . 4 (𝑢 = 𝑦 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)))
3130ralbidv 3088 . . 3 (𝑢 = 𝑦 → (∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)))
3231reu4 3506 . 2 (∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ (∃𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑢𝑋𝑦𝑋 ((∀𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ ∀𝑥𝑋 ((𝑦𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑦) = 𝑥)) → 𝑢 = 𝑦)))
3325, 32sylibr 224 1 (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1596  wcel 2103  wral 3014  wrex 3015  ∃!wreu 3016   × cxp 5216  ran crn 5219  wf 5997  cfv 6001  (class class class)co 6765  1st c1st 7283  2nd c2nd 7284  AbelOpcablo 27628  RingOpscrngo 33925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-fv 6009  df-ov 6768  df-1st 7285  df-2nd 7286  df-rngo 33926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator