![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngnegr | Structured version Visualization version GIF version |
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 34073 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
rngnegr | ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringgrp 18760 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | ringnegl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | ringnegl.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 18776 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐵) |
9 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
10 | 5, 9 | grpinvcl 17675 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
11 | 4, 8, 10 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
12 | eqid 2771 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 5, 12, 13 | ringdi 18774 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
15 | 1, 2, 11, 8, 14 | syl13anc 1478 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
16 | eqid 2771 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 5, 12, 16, 9 | grplinv 17676 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
18 | 4, 8, 17 | syl2anc 573 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
19 | 18 | oveq2d 6812 | . . . . 5 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (𝑋 · (0g‘𝑅))) |
20 | 5, 13, 16 | ringrz 18796 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
21 | 1, 2, 20 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2805 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (0g‘𝑅)) |
23 | 5, 13, 6 | ringridm 18780 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
24 | 1, 2, 23 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) |
25 | 24 | oveq2d 6812 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋)) |
26 | 15, 22, 25 | 3eqtr3rd 2814 | . . 3 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅)) |
27 | 5, 13 | ringcl 18769 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵) → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
28 | 1, 2, 11, 27 | syl3anc 1476 | . . . 4 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
29 | 5, 12, 16, 9 | grpinvid2 17679 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
30 | 4, 2, 28, 29 | syl3anc 1476 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 247 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 ))) |
32 | 31 | eqcomd 2777 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 .rcmulr 16150 0gc0g 16308 Grpcgrp 17630 invgcminusg 17631 1rcur 18709 Ringcrg 18755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-mgp 18698 df-ur 18710 df-ring 18757 |
This theorem is referenced by: ringmneg2 18805 irredneg 18918 lmodsubdi 19130 mdetunilem7 20642 ldualvsubval 34966 lcdvsubval 37428 mapdpglem30 37512 |
Copyright terms: Public domain | W3C validator |