![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngmgmbs4 | Structured version Visualization version GIF version |
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngmgmbs4 | ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3201 | . . . . 5 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | |
2 | simpl 474 | . . . . . . . . 9 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥) | |
3 | 2 | eqcomd 2766 | . . . . . . . 8 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥)) |
4 | oveq2 6822 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥)) | |
5 | 4 | eqeq2d 2770 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑥 = (𝑢𝐺𝑦) ↔ 𝑥 = (𝑢𝐺𝑥))) |
6 | 5 | rspcev 3449 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 = (𝑢𝐺𝑥)) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
7 | 6 | ex 449 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
8 | 3, 7 | syl5 34 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
9 | 8 | reximdv 3154 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → (∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
10 | 9 | ralimia 3088 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
11 | 1, 10 | syl 17 | . . . 4 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
12 | 11 | anim2i 594 | . . 3 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
13 | foov 6974 | . . 3 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) | |
14 | 12, 13 | sylibr 224 | . 2 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
15 | forn 6280 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → ran 𝐺 = 𝑋) | |
16 | 14, 15 | syl 17 | 1 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 × cxp 5264 ran crn 5267 ⟶wf 6045 –onto→wfo 6047 (class class class)co 6814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-ov 6817 |
This theorem is referenced by: rngorn1eq 34064 |
Copyright terms: Public domain | W3C validator |