Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmco Structured version   Visualization version   GIF version

Theorem rnghmco 42432
 Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
rnghmco ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ (𝑆 RngHomo 𝑈))

Proof of Theorem rnghmco
StepHypRef Expression
1 rnghmrcl 42414 . . . 4 (𝐹 ∈ (𝑇 RngHomo 𝑈) → (𝑇 ∈ Rng ∧ 𝑈 ∈ Rng))
21simprd 483 . . 3 (𝐹 ∈ (𝑇 RngHomo 𝑈) → 𝑈 ∈ Rng)
3 rnghmrcl 42414 . . . 4 (𝐺 ∈ (𝑆 RngHomo 𝑇) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
43simpld 482 . . 3 (𝐺 ∈ (𝑆 RngHomo 𝑇) → 𝑆 ∈ Rng)
52, 4anim12ci 601 . 2 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝑆 ∈ Rng ∧ 𝑈 ∈ Rng))
6 rnghmghm 42423 . . . 4 (𝐹 ∈ (𝑇 RngHomo 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
7 rnghmghm 42423 . . . 4 (𝐺 ∈ (𝑆 RngHomo 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
8 ghmco 17888 . . . 4 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
96, 7, 8syl2an 583 . . 3 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
10 eqid 2771 . . . . 5 (mulGrp‘𝑇) = (mulGrp‘𝑇)
11 eqid 2771 . . . . 5 (mulGrp‘𝑈) = (mulGrp‘𝑈)
1210, 11rnghmmgmhm 42419 . . . 4 (𝐹 ∈ (𝑇 RngHomo 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MgmHom (mulGrp‘𝑈)))
13 eqid 2771 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1413, 10rnghmmgmhm 42419 . . . 4 (𝐺 ∈ (𝑆 RngHomo 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
15 mgmhmco 42326 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑇) MgmHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))
1612, 14, 15syl2an 583 . . 3 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))
179, 16jca 501 . 2 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈))))
1813, 11isrnghmmul 42418 . 2 ((𝐹𝐺) ∈ (𝑆 RngHomo 𝑈) ↔ ((𝑆 ∈ Rng ∧ 𝑈 ∈ Rng) ∧ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))))
195, 17, 18sylanbrc 572 1 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ (𝑆 RngHomo 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 2145   ∘ ccom 5254  ‘cfv 6030  (class class class)co 6796   GrpHom cghm 17865  mulGrpcmgp 18697   MgmHom cmgmhm 42302  Rngcrng 42399   RngHomo crngh 42410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-ghm 17866  df-abl 18403  df-mgp 18698  df-mgmhm 42304  df-rng0 42400  df-rnghomo 42412 This theorem is referenced by:  rnghmsubcsetclem2  42501  rngccatidALTV  42514
 Copyright terms: Public domain W3C validator