![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcrescrhm | Structured version Visualization version GIF version |
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rngcrescrhm | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . 2 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
2 | rngcrescrhm.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | fvex 6342 | . . . 4 ⊢ (RngCat‘𝑈) ∈ V | |
4 | 2, 3 | eqeltri 2845 | . . 3 ⊢ 𝐶 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
6 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
7 | incom 3954 | . . . 4 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
8 | 6, 7 | syl6eq 2820 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
9 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
10 | inex1g 4932 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
12 | 8, 11 | eqeltrd 2849 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
13 | inss1 3979 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
14 | 6, 13 | syl6eqss 3802 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
15 | xpss12 5264 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring)) | |
16 | 14, 14, 15 | syl2anc 565 | . . . 4 ⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring)) |
17 | rhmfn 42436 | . . . . 5 ⊢ RingHom Fn (Ring × Ring) | |
18 | fnssresb 6143 | . . . . 5 ⊢ ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) | |
19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) |
20 | 16, 19 | mpbird 247 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
21 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
22 | 21 | fneq1i 6125 | . . 3 ⊢ (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
23 | 20, 22 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
24 | 1, 5, 12, 23 | rescval2 16694 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∩ cin 3720 ⊆ wss 3721 〈cop 4320 × cxp 5247 ↾ cres 5251 Fn wfn 6026 ‘cfv 6031 (class class class)co 6792 ndxcnx 16060 sSet csts 16061 ↾s cress 16064 Hom chom 16159 ↾cat cresc 16674 Ringcrg 18754 RingHom crh 18921 RngCatcrngc 42475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-plusg 16161 df-0g 16309 df-resc 16677 df-mhm 17542 df-ghm 17865 df-mgp 18697 df-ur 18709 df-ring 18756 df-rnghom 18924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |