Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcisoALTV Structured version   Visualization version   GIF version

Theorem rngcisoALTV 42500
Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcsectALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcsectALTV.b 𝐵 = (Base‘𝐶)
rngcsectALTV.u (𝜑𝑈𝑉)
rngcsectALTV.x (𝜑𝑋𝐵)
rngcsectALTV.y (𝜑𝑌𝐵)
rngcisoALTV.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
rngcisoALTV (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))

Proof of Theorem rngcisoALTV
StepHypRef Expression
1 rngcsectALTV.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2756 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 rngcsectALTV.u . . . . 5 (𝜑𝑈𝑉)
4 rngcsectALTV.c . . . . . 6 𝐶 = (RngCatALTV‘𝑈)
54rngccatALTV 42496 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 rngcsectALTV.x . . . 4 (𝜑𝑋𝐵)
8 rngcsectALTV.y . . . 4 (𝜑𝑌𝐵)
9 rngcisoALTV.n . . . 4 𝐼 = (Iso‘𝐶)
101, 2, 6, 7, 8, 9isoval 16622 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1110eleq2d 2821 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
121, 2, 6, 7, 8invfun 16621 . . . . 5 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌))
13 funfvbrb 6489 . . . . 5 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1412, 13syl 17 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
154, 1, 3, 7, 8, 2rngcinvALTV 42499 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹)))
16 simpl 474 . . . . 5 ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹) → 𝐹 ∈ (𝑋 RngIsom 𝑌))
1715, 16syl6bi 243 . . . 4 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹 ∈ (𝑋 RngIsom 𝑌)))
1814, 17sylbid 230 . . 3 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹 ∈ (𝑋 RngIsom 𝑌)))
19 eqid 2756 . . . 4 𝐹 = 𝐹
204, 1, 3, 7, 8, 2rngcinvALTV 42499 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐹 = 𝐹)))
21 funrel 6062 . . . . . . 7 (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌))
2212, 21syl 17 . . . . . 6 (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌))
23 releldm 5509 . . . . . . 7 ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
2423ex 449 . . . . . 6 (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2522, 24syl 17 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2620, 25sylbird 250 . . . 4 (𝜑 → ((𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐹 = 𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2719, 26mpan2i 715 . . 3 (𝜑 → (𝐹 ∈ (𝑋 RngIsom 𝑌) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2818, 27impbid 202 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))
2911, 28bitrd 268 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135   class class class wbr 4800  ccnv 5261  dom cdm 5262  Rel wrel 5267  Fun wfun 6039  cfv 6045  (class class class)co 6809  Basecbs 16055  Catccat 16522  Invcinv 16602  Isociso 16603   RngIsom crngs 42392  RngCatALTVcrngcALTV 42464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-map 8021  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-fz 12516  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-plusg 16152  df-hom 16164  df-cco 16165  df-0g 16300  df-cat 16526  df-cid 16527  df-sect 16604  df-inv 16605  df-iso 16606  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-mhm 17532  df-grp 17622  df-ghm 17855  df-abl 18392  df-mgp 18686  df-mgmhm 42285  df-rng0 42381  df-rnghomo 42393  df-rngisom 42394  df-rngcALTV 42466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator