![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rngccat.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcid.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcid.o | ⊢ 1 = (Id‘𝐶) |
rngcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngcid.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
rngcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcid.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | rngccat.c | . . . . . 6 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | rngcid.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | eqidd 2770 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
5 | eqidd 2770 | . . . . . 6 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
6 | 2, 3, 4, 5 | rngcval 42487 | . . . . 5 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))) |
7 | 6 | fveq2d 6335 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))) |
8 | 1, 7 | syl5eq 2815 | . . 3 ⊢ (𝜑 → 1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))) |
9 | 8 | fveq1d 6333 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋)) |
10 | eqid 2769 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
11 | eqid 2769 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
12 | incom 3953 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
14 | 11, 3, 13, 5 | rnghmsubcsetc 42502 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
15 | 4, 5 | rnghmresfn 42488 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) Fn ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
16 | eqid 2769 | . . 3 ⊢ (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈)) | |
17 | rngcid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | rngcid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 2, 18, 3 | rngcbas 42490 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
20 | 19 | eleq2d 2834 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Rng))) |
21 | 17, 20 | mpbid 222 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Rng)) |
22 | 10, 14, 15, 16, 21 | subcid 16720 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋)) |
23 | elinel1 3947 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋 ∈ 𝑈) | |
24 | 20, 23 | syl6bi 243 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
25 | 17, 24 | mpd 15 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
26 | 11, 16, 3, 25 | estrcid 16987 | . . 3 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋))) |
27 | rngcid.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝑋) | |
28 | 27 | eqcomi 2778 | . . . . 5 ⊢ (Base‘𝑋) = 𝑆 |
29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑋) = 𝑆) |
30 | 29 | reseq2d 5533 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆)) |
31 | 26, 30 | eqtrd 2803 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆)) |
32 | 9, 22, 31 | 3eqtr2d 2809 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 ∈ wcel 2143 ∩ cin 3719 I cid 5155 × cxp 5246 ↾ cres 5250 ‘cfv 6030 (class class class)co 6791 Basecbs 16070 Idccid 16539 ↾cat cresc 16681 ExtStrCatcestrc 16975 Rngcrng 42399 RngHomo crngh 42410 RngCatcrngc 42482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-fal 1635 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-map 8009 df-pm 8010 df-ixp 8061 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11888 df-fz 12533 df-struct 16072 df-ndx 16073 df-slot 16074 df-base 16076 df-sets 16077 df-ress 16078 df-plusg 16168 df-hom 16180 df-cco 16181 df-0g 16316 df-cat 16542 df-cid 16543 df-homf 16544 df-ssc 16683 df-resc 16684 df-subc 16685 df-estrc 16976 df-mgm 17456 df-sgrp 17498 df-mnd 17509 df-mhm 17549 df-grp 17639 df-ghm 17872 df-abl 18409 df-mgp 18704 df-mgmhm 42304 df-rng0 42400 df-rnghomo 42412 df-rngc 42484 |
This theorem is referenced by: rngcsect 42505 rhmsubcrngclem1 42552 rhmsubclem3 42613 |
Copyright terms: Public domain | W3C validator |