![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomffvalALTV | Structured version Visualization version GIF version |
Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngchomffvalALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngchomffvalALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngchomffvalALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomffvalALTV.h | ⊢ 𝐹 = (Homf ‘𝐶) |
Ref | Expression |
---|---|
rngchomffvalALTV | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomffvalALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | rngchomffvalALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | rngchomffvalALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | eqid 2770 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | 1, 2, 3, 4 | rngchomfvalALTV 42502 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
6 | eqid 2770 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) | |
7 | ovex 6822 | . . . . 5 ⊢ (𝑥 RngHomo 𝑦) ∈ V | |
8 | 6, 7 | fnmpt2i 7388 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) Fn (𝐵 × 𝐵) |
9 | fneq1 6119 | . . . 4 ⊢ ((Hom ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) → ((Hom ‘𝐶) Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) Fn (𝐵 × 𝐵))) | |
10 | 8, 9 | mpbiri 248 | . . 3 ⊢ ((Hom ‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦)) → (Hom ‘𝐶) Fn (𝐵 × 𝐵)) |
11 | rngchomffvalALTV.h | . . . 4 ⊢ 𝐹 = (Homf ‘𝐶) | |
12 | 11, 2, 4 | fnhomeqhomf 16557 | . . 3 ⊢ ((Hom ‘𝐶) Fn (𝐵 × 𝐵) → 𝐹 = (Hom ‘𝐶)) |
13 | 5, 10, 12 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐹 = (Hom ‘𝐶)) |
14 | 13, 5 | eqtrd 2804 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RngHomo 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 × cxp 5247 Fn wfn 6026 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 Basecbs 16063 Hom chom 16159 Homf chomf 16533 RngHomo crngh 42403 RngCatALTVcrngcALTV 42476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-hom 16173 df-cco 16174 df-homf 16537 df-rngcALTV 42478 |
This theorem is referenced by: rngchomrnghmresALTV 42514 |
Copyright terms: Public domain | W3C validator |