Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngccofvalALTV Structured version   Visualization version   GIF version

Theorem rngccofvalALTV 42497
 Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcbasALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcbasALTV.b 𝐵 = (Base‘𝐶)
rngcbasALTV.u (𝜑𝑈𝑉)
rngccofvalALTV.o · = (comp‘𝐶)
Assertion
Ref Expression
rngccofvalALTV (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
Distinct variable groups:   𝑓,𝑔,𝑣,𝑧   𝑣,𝑈,𝑧   𝜑,𝑣,𝑧   𝑣,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐶(𝑧,𝑣,𝑓,𝑔)   · (𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝑉(𝑧,𝑣,𝑓,𝑔)

Proof of Theorem rngccofvalALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcbasALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
2 rngcbasALTV.u . . . 4 (𝜑𝑈𝑉)
3 rngcbasALTV.b . . . . 5 𝐵 = (Base‘𝐶)
41, 3, 2rngcbasALTV 42493 . . . 4 (𝜑𝐵 = (𝑈 ∩ Rng))
5 eqid 2760 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
61, 3, 2, 5rngchomfvalALTV 42494 . . . 4 (𝜑 → (Hom ‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
7 eqidd 2761 . . . 4 (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
81, 2, 4, 6, 7rngcvalALTV 42471 . . 3 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
98fveq2d 6356 . 2 (𝜑 → (comp‘𝐶) = (comp‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩}))
10 rngccofvalALTV.o . 2 · = (comp‘𝐶)
11 fvex 6362 . . . . . 6 (Base‘𝐶) ∈ V
123, 11eqeltri 2835 . . . . 5 𝐵 ∈ V
13 sqxpexg 7128 . . . . 5 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
1412, 13ax-mp 5 . . . 4 (𝐵 × 𝐵) ∈ V
1514, 12mpt2ex 7415 . . 3 (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) ∈ V
16 catstr 16818 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩} Struct ⟨1, 15⟩
17 ccoid 16279 . . . 4 comp = Slot (comp‘ndx)
18 snsstp3 4494 . . . 4 {⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩}
1916, 17, 18strfv 16109 . . 3 ((𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) = (comp‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩}))
2015, 19ax-mp 5 . 2 (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))) = (comp‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (Hom ‘𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
219, 10, 203eqtr4g 2819 1 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632   ∈ wcel 2139  Vcvv 3340  {ctp 4325  ⟨cop 4327   × cxp 5264   ∘ ccom 5270  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  1st c1st 7331  2nd c2nd 7332  1c1 10129  5c5 11265  ;cdc 11685  ndxcnx 16056  Basecbs 16059  Hom chom 16154  compcco 16155   RngHomo crngh 42395  RngCatALTVcrngcALTV 42468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-hom 16168  df-cco 16169  df-rngcALTV 42470 This theorem is referenced by:  rngccoALTV  42498
 Copyright terms: Public domain W3C validator