![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version |
Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5277 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | cnvfi 8415 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
3 | dmfi 8411 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
5 | 1, 4 | syl5eqel 2843 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ◡ccnv 5265 dom cdm 5266 ran crn 5267 Fincfn 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7232 df-1st 7334 df-2nd 7335 df-1o 7730 df-er 7913 df-en 8124 df-dom 8125 df-fin 8127 |
This theorem is referenced by: f1dmvrnfibi 8417 unirnffid 8425 abrexfi 8433 gsum2dlem1 18589 gsum2dlem2 18590 tsmsxplem1 22177 prdsmet 22396 relfi 29743 imafi2 29819 cmpcref 30247 carsggect 30710 carsgclctunlem2 30711 carsgclctunlem3 30712 breprexplema 31038 ptrecube 33740 heicant 33775 mblfinlem1 33777 ftc1anclem3 33818 istotbnd3 33901 sstotbnd2 33904 sstotbnd 33905 totbndbnd 33919 rnmptfi 39868 rnffi 39873 choicefi 39909 stoweidlem39 40777 stoweidlem59 40797 fourierdlem31 40876 fourierdlem42 40887 fourierdlem54 40898 aacllem 43078 |
Copyright terms: Public domain | W3C validator |