![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rneq | Structured version Visualization version GIF version |
Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
rneq | ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5328 | . . 3 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | 1 | dmeqd 5358 | . 2 ⊢ (𝐴 = 𝐵 → dom ◡𝐴 = dom ◡𝐵) |
3 | df-rn 5154 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
4 | df-rn 5154 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
5 | 2, 3, 4 | 3eqtr4g 2710 | 1 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ◡ccnv 5142 dom cdm 5143 ran crn 5144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: rneqi 5384 rneqd 5385 feq1 6064 foeq1 6149 fnrnfv 6281 fconst5 6512 frxp 7332 tz7.44-2 7548 tz7.44-3 7549 ixpsnf1o 7990 ordtypecbv 8463 ordtypelem3 8466 dfac8alem 8890 dfac8a 8891 dfac5lem3 8986 dfac9 8996 dfac12lem1 9003 dfac12r 9006 ackbij2 9103 isfin3ds 9189 fin23lem17 9198 fin23lem29 9201 fin23lem30 9202 fin23lem32 9204 fin23lem34 9206 fin23lem35 9207 fin23lem39 9210 fin23lem41 9212 isf33lem 9226 isf34lem6 9240 dcomex 9307 axdc2lem 9308 zorn2lem1 9356 zorn2g 9363 ttukey2g 9376 gruurn 9658 rpnnen1lem6 11857 rpnnen1OLD 11863 relexp0g 13806 relexpsucnnr 13809 dfrtrcl2 13846 mpfrcl 19566 ply1frcl 19731 pnrmopn 21195 isi1f 23486 itg1val 23495 axlowdimlem13 25879 axlowdim1 25884 ausgrusgri 26108 0uhgrsubgr 26216 cusgrsize 26406 ex-rn 27427 gidval 27494 grpoinvfval 27504 grpodivfval 27516 isablo 27528 vciOLD 27544 isvclem 27560 isnvlem 27593 isphg 27800 pj11i 28698 hmopidmch 29140 hmopidmpj 29141 pjss1coi 29150 padct 29625 locfinreflem 30035 locfinref 30036 issibf 30523 sitgfval 30531 mrsubvrs 31545 rdgprc0 31823 rdgprc 31824 dfrdg2 31825 madeval 32060 brrangeg 32168 poimirlem24 33563 volsupnfl 33584 elghomlem1OLD 33814 isdivrngo 33879 iscom2 33924 elrefrels2 34407 elrefrels3 34408 refreleq 34410 elcnvrefrels2 34420 elcnvrefrels3 34421 dnnumch1 37931 aomclem3 37943 aomclem8 37948 rclexi 38239 rtrclex 38241 rtrclexi 38245 cnvrcl0 38249 dfrtrcl5 38253 dfrcl2 38283 csbima12gALTVD 39447 unirnmap 39714 ssmapsn 39722 sge0val 40901 vonvolmbl 41196 |
Copyright terms: Public domain | W3C validator |