MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfm Structured version   Visualization version   GIF version

Theorem rnelfm 21804
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
rnelfm ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))

Proof of Theorem rnelfm
Dummy variables 𝑏 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filtop 21706 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
213ad2ant2 1103 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
3 simp1 1081 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌𝐴)
4 simp3 1083 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
5 fmf 21796 . . . . . 6 ((𝑋𝐿𝑌𝐴𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
62, 3, 4, 5syl3anc 1366 . . . . 5 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
7 ffn 6083 . . . . 5 ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
86, 7syl 17 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
9 fvelrnb 6282 . . . 4 ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
108, 9syl 17 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
11 ffn 6083 . . . . . . . . . . . 12 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
12 dffn4 6159 . . . . . . . . . . . 12 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
1311, 12sylib 208 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
14 foima 6158 . . . . . . . . . . 11 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
1513, 14syl 17 . . . . . . . . . 10 (𝐹:𝑌𝑋 → (𝐹𝑌) = ran 𝐹)
1615ad2antlr 763 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) = ran 𝐹)
17 simpll 805 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐿)
18 simpr 476 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
19 simplr 807 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
20 fgcl 21729 . . . . . . . . . . . 12 (𝑏 ∈ (fBas‘𝑌) → (𝑌filGen𝑏) ∈ (Fil‘𝑌))
21 filtop 21706 . . . . . . . . . . . 12 ((𝑌filGen𝑏) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2220, 21syl 17 . . . . . . . . . . 11 (𝑏 ∈ (fBas‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2322adantl 481 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑌 ∈ (𝑌filGen𝑏))
24 eqid 2651 . . . . . . . . . . 11 (𝑌filGen𝑏) = (𝑌filGen𝑏)
2524imaelfm 21802 . . . . . . . . . 10 (((𝑋𝐿𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝑏)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2617, 18, 19, 23, 25syl31anc 1369 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2716, 26eqeltrrd 2731 . . . . . . . 8 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏))
28 eleq2 2719 . . . . . . . 8 (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → (ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏) ↔ ran 𝐹𝐿))
2927, 28syl5ibcom 235 . . . . . . 7 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
3029ex 449 . . . . . 6 ((𝑋𝐿𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
311, 30sylan 487 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
32313adant1 1099 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
3332rexlimdv 3059 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
3410, 33sylbid 230 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) → ran 𝐹𝐿))
35 simpl2 1085 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ (Fil‘𝑋))
36 filelss 21703 . . . . . . . . . 10 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
3736ex 449 . . . . . . . . 9 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
3835, 37syl 17 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡𝑋))
39 simpr 476 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → 𝑡𝐿)
40 eqidd 2652 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) = (𝐹𝑡))
41 imaeq2 5497 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
4241eqeq2d 2661 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((𝐹𝑡) = (𝐹𝑥) ↔ (𝐹𝑡) = (𝐹𝑡)))
4342rspcev 3340 . . . . . . . . . . . 12 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
4439, 40, 43syl2anc 694 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
45 simpl1 1084 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
46 cnvimass 5520 . . . . . . . . . . . . . . . . 17 (𝐹𝑡) ⊆ dom 𝐹
47 fdm 6089 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
4846, 47syl5sseq 3686 . . . . . . . . . . . . . . . 16 (𝐹:𝑌𝑋 → (𝐹𝑡) ⊆ 𝑌)
49483ad2ant3 1104 . . . . . . . . . . . . . . 15 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹𝑡) ⊆ 𝑌)
5049adantr 480 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ⊆ 𝑌)
5145, 50ssexd 4838 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ∈ V)
52 eqid 2651 . . . . . . . . . . . . . 14 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
5352elrnmpt 5404 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5451, 53syl 17 . . . . . . . . . . . 12 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5554adantr 480 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5644, 55mpbird 247 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
57 ssid 3657 . . . . . . . . . . 11 (𝐹𝑡) ⊆ (𝐹𝑡)
58 ffun 6086 . . . . . . . . . . . . . 14 (𝐹:𝑌𝑋 → Fun 𝐹)
59583ad2ant3 1104 . . . . . . . . . . . . 13 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
6059ad2antrr 762 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → Fun 𝐹)
61 funimass3 6373 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6260, 46, 61sylancl 695 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6357, 62mpbiri 248 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
64 imaeq2 5497 . . . . . . . . . . . 12 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
6564sseq1d 3665 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
6665rspcev 3340 . . . . . . . . . 10 (((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6756, 63, 66syl2anc 694 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6867ex 449 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡))
6938, 68jcad 554 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
7035adantr 480 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
71 vex 3234 . . . . . . . . . . . . . . 15 𝑠 ∈ V
7252elrnmpt 5404 . . . . . . . . . . . . . . 15 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
74 ssid 3657 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑥) ⊆ (𝐹𝑥)
7559ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → Fun 𝐹)
76 cnvimass 5520 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑥) ⊆ dom 𝐹
77 funimass3 6373 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7875, 76, 77sylancl 695 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7974, 78mpbiri 248 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ 𝑥)
80 imassrn 5512 . . . . . . . . . . . . . . . . . . . 20 (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹
81 ssin 3868 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹) ↔ (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
8279, 80, 81sylanblc 697 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
83 elin 3829 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑧𝑥𝑧 ∈ ran 𝐹))
84 fvelrnb 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 Fn 𝑌 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8511, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑌𝑋 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
86853ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8786ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8875ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → Fun 𝐹)
8988, 76jctir 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹))
9059ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → Fun 𝐹)
9190ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → Fun 𝐹)
92473ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
9392ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → dom 𝐹 = 𝑌)
9493eleq2d 2716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ dom 𝐹𝑦𝑌))
9594biimpar 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → 𝑦 ∈ dom 𝐹)
96 fvimacnv 6372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9791, 95, 96syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9897biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦 ∈ (𝐹𝑥))
99 funfvima2 6533 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑦 ∈ (𝐹𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
10089, 98, 99sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)))
101100ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
102 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝑥𝑧𝑥))
103 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)) ↔ 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
104102, 103imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑧 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))) ↔ (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
105101, 104syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
106105rexlimdva 3060 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (∃𝑦𝑌 (𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
10787, 106sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
108107com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧𝑥 → (𝑧 ∈ ran 𝐹𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
109108impd 446 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑧𝑥𝑧 ∈ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
11083, 109syl5bi 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ (𝑥 ∩ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
111110ssrdv 3642 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ (𝐹 “ (𝐹𝑥)))
11282, 111eqssd 3653 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) = (𝑥 ∩ ran 𝐹))
113 filin 21705 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
1141133exp 1283 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 → (ran 𝐹𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
115114com23 86 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ (Fil‘𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
1161153ad2ant2 1103 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
117116imp31 447 . . . . . . . . . . . . . . . . . . 19 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
118117adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
119112, 118eqeltrd 2730 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)
120119exp32 630 . . . . . . . . . . . . . . . 16 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
121 imaeq2 5497 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
122121sseq1d 3665 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
123121eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ∈ 𝐿 ↔ (𝐹 “ (𝐹𝑥)) ∈ 𝐿))
124123imbi2d 329 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝑡𝑋 → (𝐹𝑠) ∈ 𝐿) ↔ (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
125122, 124imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿))))
126120, 125syl5ibrcom 237 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
127126rexlimdva 3060 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
12873, 127syl5bi 232 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
129128imp44 621 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ∈ 𝐿)
130 simprr 811 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝑋)
131 simprlr 820 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ⊆ 𝑡)
132 filss 21704 . . . . . . . . . . . 12 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝐹𝑠) ∈ 𝐿𝑡𝑋 ∧ (𝐹𝑠) ⊆ 𝑡)) → 𝑡𝐿)
13370, 129, 130, 131, 132syl13anc 1368 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝐿)
134133exp44 640 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
135134rexlimdv 3059 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
136135com23 86 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝑋 → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡𝑡𝐿)))
137136impd 446 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
13869, 137impbid 202 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
1392adantr 480 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
140 rnelfmlem 21803 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
141 simpl3 1086 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
142 elfm 21798 . . . . . . 7 ((𝑋𝐿 ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
143139, 140, 141, 142syl3anc 1366 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
144138, 143bitr4d 271 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥)))))
145144eqrdv 2649 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 = ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))))
1468adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
147 fnfvelrn 6396 . . . . 5 (((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
148146, 140, 147syl2anc 694 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
149145, 148eqeltrd 2730 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ ran (𝑋 FilMap 𝐹))
150149ex 449 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿𝐿 ∈ ran (𝑋 FilMap 𝐹)))
15134, 150impbid 202 1 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  Vcvv 3231  cin 3606  wss 3607  cmpt 4762  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146  Fun wfun 5920   Fn wfn 5921  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  fBascfbas 19782  filGencfg 19783  Filcfil 21696   FilMap cfm 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-fbas 19791  df-fg 19792  df-fil 21697  df-fm 21789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator