![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncoss | Structured version Visualization version GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoss | ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss 5417 | . 2 ⊢ dom (◡𝐵 ∘ ◡𝐴) ⊆ dom ◡𝐴 | |
2 | df-rn 5154 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
3 | cnvco 5340 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
4 | 3 | dmeqi 5357 | . . 3 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
5 | 2, 4 | eqtri 2673 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
6 | df-rn 5154 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 1, 5, 6 | 3sstr4i 3677 | 1 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3607 ◡ccnv 5142 dom cdm 5143 ran crn 5144 ∘ ccom 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 |
This theorem is referenced by: cossxp 5696 fco 6096 fin23lem29 9201 fin23lem30 9202 wunco 9593 imasless 16247 gsumzf1o 18359 znleval 19951 pi1xfrcnvlem 22902 pjss1coi 29150 pj3i 29195 smatrcl 29990 mblfinlem3 33578 mblfinlem4 33579 ismblfin 33580 relexp0a 38325 rntrclfv 38341 fco3 39735 stoweidlem27 40562 fourierdlem42 40684 hoicvr 41083 |
Copyright terms: Public domain | W3C validator |