![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmygeid | Structured version Visualization version GIF version |
Description: Y(n) increases faster than n. Used implicitly without proof or comment in lemma 2.27 of [JonesMatijasevic] p. 697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
rmygeid | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑎 = 0 → 𝑎 = 0) | |
2 | oveq2 6823 | . . . . 5 ⊢ (𝑎 = 0 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 0)) | |
3 | 1, 2 | breq12d 4818 | . . . 4 ⊢ (𝑎 = 0 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 0 ≤ (𝐴 Yrm 0))) |
4 | 3 | imbi2d 329 | . . 3 ⊢ (𝑎 = 0 → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ (𝐴 Yrm 0)))) |
5 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑏 → 𝑎 = 𝑏) | |
6 | oveq2 6823 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏)) | |
7 | 5, 6 | breq12d 4818 | . . . 4 ⊢ (𝑎 = 𝑏 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑏 ≤ (𝐴 Yrm 𝑏))) |
8 | 7 | imbi2d 329 | . . 3 ⊢ (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏)))) |
9 | id 22 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → 𝑎 = (𝑏 + 1)) | |
10 | oveq2 6823 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1))) | |
11 | 9, 10 | breq12d 4818 | . . . 4 ⊢ (𝑎 = (𝑏 + 1) → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1)))) |
12 | 11 | imbi2d 329 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))) |
13 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑁 → 𝑎 = 𝑁) | |
14 | oveq2 6823 | . . . . 5 ⊢ (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁)) | |
15 | 13, 14 | breq12d 4818 | . . . 4 ⊢ (𝑎 = 𝑁 → (𝑎 ≤ (𝐴 Yrm 𝑎) ↔ 𝑁 ≤ (𝐴 Yrm 𝑁))) |
16 | 15 | imbi2d 329 | . . 3 ⊢ (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ≥‘2) → 𝑎 ≤ (𝐴 Yrm 𝑎)) ↔ (𝐴 ∈ (ℤ≥‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁)))) |
17 | 0le0 11323 | . . . 4 ⊢ 0 ≤ 0 | |
18 | rmy0 38015 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 0) = 0) | |
19 | 17, 18 | syl5breqr 4843 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → 0 ≤ (𝐴 Yrm 0)) |
20 | nn0z 11613 | . . . . . . . . 9 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
21 | 20 | 3ad2ant1 1128 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℤ) |
22 | 21 | peano2zd 11698 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℤ) |
23 | 22 | zred 11695 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ∈ ℝ) |
24 | simp2 1132 | . . . . . . . . 9 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝐴 ∈ (ℤ≥‘2)) | |
25 | frmy 38000 | . . . . . . . . . 10 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 6932 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ) |
27 | 24, 21, 26 | syl2anc 696 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℤ) |
28 | 27 | peano2zd 11698 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℤ) |
29 | 28 | zred 11695 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ∈ ℝ) |
30 | 25 | fovcl 6932 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) |
31 | 24, 22, 30 | syl2anc 696 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) |
32 | 31 | zred 11695 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ) |
33 | nn0re 11514 | . . . . . . . 8 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ) | |
34 | 33 | 3ad2ant1 1128 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ∈ ℝ) |
35 | 27 | zred 11695 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) ∈ ℝ) |
36 | 1red 10268 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 1 ∈ ℝ) | |
37 | simp3 1133 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 ≤ (𝐴 Yrm 𝑏)) | |
38 | 34, 35, 36, 37 | leadd1dd 10854 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ ((𝐴 Yrm 𝑏) + 1)) |
39 | 34 | ltp1d 11167 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → 𝑏 < (𝑏 + 1)) |
40 | ltrmy 38040 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))) | |
41 | 24, 21, 22, 40 | syl3anc 1477 | . . . . . . . 8 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 < (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))) |
42 | 39, 41 | mpbid 222 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1))) |
43 | zltp1le 11640 | . . . . . . . 8 ⊢ (((𝐴 Yrm 𝑏) ∈ ℤ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℤ) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1)))) | |
44 | 27, 31, 43 | syl2anc 696 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)) ↔ ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1)))) |
45 | 42, 44 | mpbid 222 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → ((𝐴 Yrm 𝑏) + 1) ≤ (𝐴 Yrm (𝑏 + 1))) |
46 | 23, 29, 32, 38, 45 | letrd 10407 | . . . . 5 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))) |
47 | 46 | 3exp 1113 | . . . 4 ⊢ (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ≥‘2) → (𝑏 ≤ (𝐴 Yrm 𝑏) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))) |
48 | 47 | a2d 29 | . . 3 ⊢ (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ≥‘2) → 𝑏 ≤ (𝐴 Yrm 𝑏)) → (𝐴 ∈ (ℤ≥‘2) → (𝑏 + 1) ≤ (𝐴 Yrm (𝑏 + 1))))) |
49 | 4, 8, 12, 16, 19, 48 | nn0ind 11685 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ≥‘2) → 𝑁 ≤ (𝐴 Yrm 𝑁))) |
50 | 49 | impcom 445 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝐴 Yrm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 < clt 10287 ≤ cle 10288 2c2 11283 ℕ0cn0 11505 ℤcz 11590 ℤ≥cuz 11900 Yrm crmy 37986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-omul 7736 df-er 7914 df-map 8028 df-pm 8029 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-fi 8485 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-acn 8979 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-xnn0 11577 df-z 11591 df-dec 11707 df-uz 11901 df-q 12003 df-rp 12047 df-xneg 12160 df-xadd 12161 df-xmul 12162 df-ioo 12393 df-ioc 12394 df-ico 12395 df-icc 12396 df-fz 12541 df-fzo 12681 df-fl 12808 df-mod 12884 df-seq 13017 df-exp 13076 df-fac 13276 df-bc 13305 df-hash 13333 df-shft 14027 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-limsup 14422 df-clim 14439 df-rlim 14440 df-sum 14637 df-ef 15018 df-sin 15020 df-cos 15021 df-pi 15023 df-dvds 15204 df-gcd 15440 df-numer 15666 df-denom 15667 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-hom 16189 df-cco 16190 df-rest 16306 df-topn 16307 df-0g 16325 df-gsum 16326 df-topgen 16327 df-pt 16328 df-prds 16331 df-xrs 16385 df-qtop 16390 df-imas 16391 df-xps 16393 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-submnd 17558 df-mulg 17763 df-cntz 17971 df-cmn 18416 df-psmet 19961 df-xmet 19962 df-met 19963 df-bl 19964 df-mopn 19965 df-fbas 19966 df-fg 19967 df-cnfld 19970 df-top 20922 df-topon 20939 df-topsp 20960 df-bases 20973 df-cld 21046 df-ntr 21047 df-cls 21048 df-nei 21125 df-lp 21163 df-perf 21164 df-cn 21254 df-cnp 21255 df-haus 21342 df-tx 21588 df-hmeo 21781 df-fil 21872 df-fm 21964 df-flim 21965 df-flf 21966 df-xms 22347 df-ms 22348 df-tms 22349 df-cncf 22903 df-limc 23850 df-dv 23851 df-log 24524 df-squarenn 37926 df-pell1qr 37927 df-pell14qr 37928 df-pell1234qr 37929 df-pellfund 37930 df-rmx 37987 df-rmy 37988 |
This theorem is referenced by: jm2.27a 38093 jm2.27c 38095 expdiophlem1 38109 |
Copyright terms: Public domain | W3C validator |