Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmydioph Structured version   Visualization version   GIF version

Theorem rmydioph 37898
Description: jm2.27 37892 restated in terms of Diophantine sets. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
rmydioph {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmydioph
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 7921 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → 𝑎:(1...3)⟶ℕ0)
2 2nn 11223 . . . . . . . . 9 2 ∈ ℕ
32jm2.27dlem3 37895 . . . . . . . 8 2 ∈ (1...2)
4 df-3 11118 . . . . . . . 8 3 = (2 + 1)
53, 4, 2jm2.27dlem2 37894 . . . . . . 7 2 ∈ (1...3)
6 ffvelrn 6397 . . . . . . 7 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
71, 5, 6sylancl 695 . . . . . 6 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘2) ∈ ℕ0)
8 elnn0 11332 . . . . . 6 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
97, 8sylib 208 . . . . 5 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
10 iba 523 . . . . . . 7 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))))
11 andi 929 . . . . . . 7 (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0)) ↔ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))
1210, 11syl6bb 276 . . . . . 6 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0))))
1312anbi2d 740 . . . . 5 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))))
149, 13syl 17 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)))))
15 simplr 807 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ (ℤ‘2))
16 nnz 11437 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘2) ∈ ℤ)
18 frmy 37796 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1918fovcl 6807 . . . . . . . . . . . . 13 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℤ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ)
2015, 17, 19syl2anc 694 . . . . . . . . . . . 12 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ)
21 rmy0 37811 . . . . . . . . . . . . . 14 ((𝑎‘1) ∈ (ℤ‘2) → ((𝑎‘1) Yrm 0) = 0)
2221ad2antlr 763 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm 0) = 0)
23 nngt0 11087 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → 0 < (𝑎‘2))
2423adantl 481 . . . . . . . . . . . . . 14 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 < (𝑎‘2))
25 0zd 11427 . . . . . . . . . . . . . . 15 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 ∈ ℤ)
26 ltrmy 37836 . . . . . . . . . . . . . . 15 (((𝑎‘1) ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ (𝑎‘2) ∈ ℤ) → (0 < (𝑎‘2) ↔ ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2))))
2715, 25, 17, 26syl3anc 1366 . . . . . . . . . . . . . 14 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (0 < (𝑎‘2) ↔ ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2))))
2824, 27mpbid 222 . . . . . . . . . . . . 13 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm 0) < ((𝑎‘1) Yrm (𝑎‘2)))
2922, 28eqbrtrrd 4709 . . . . . . . . . . . 12 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → 0 < ((𝑎‘1) Yrm (𝑎‘2)))
30 elnnz 11425 . . . . . . . . . . . 12 (((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ ↔ (((𝑎‘1) Yrm (𝑎‘2)) ∈ ℤ ∧ 0 < ((𝑎‘1) Yrm (𝑎‘2))))
3120, 29, 30sylanbrc 699 . . . . . . . . . . 11 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ)
32 eleq1 2718 . . . . . . . . . . 11 ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) → ((𝑎‘3) ∈ ℕ ↔ ((𝑎‘1) Yrm (𝑎‘2)) ∈ ℕ))
3331, 32syl5ibrcom 237 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) → (𝑎‘3) ∈ ℕ))
3433pm4.71rd 668 . . . . . . . . 9 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))))
35 simpllr 815 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘1) ∈ (ℤ‘2))
36 simplr 807 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘2) ∈ ℕ)
37 simpr 476 . . . . . . . . . . 11 ((((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → (𝑎‘3) ∈ ℕ)
38 jm2.27 37892 . . . . . . . . . . 11 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
3935, 36, 37, 38syl3anc 1366 . . . . . . . . . 10 ((((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
4039pm5.32da 674 . . . . . . . . 9 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘3) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))))
4134, 40bitrd 268 . . . . . . . 8 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))))
4241ex 449 . . . . . . 7 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘2) ∈ ℕ → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))))
4342pm5.32rd 673 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)))
44 oveq2 6698 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑎‘1) Yrm 0))
4544adantl 481 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑎‘1) Yrm 0))
4621ad2antlr 763 . . . . . . . . . 10 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm 0) = 0)
4745, 46eqtrd 2685 . . . . . . . . 9 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘1) Yrm (𝑎‘2)) = 0)
4847eqeq2d 2661 . . . . . . . 8 (((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘2) = 0) → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑎‘3) = 0))
4948ex 449 . . . . . . 7 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑎‘3) = 0)))
5049pm5.32rd 673 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0) ↔ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))
5143, 50orbi12d 746 . . . . 5 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0)) ↔ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))))
5251pm5.32da 674 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (𝑎‘2) = 0))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))))
5314, 52bitrd 268 . . 3 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))))
5453rabbiia 3215 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))}
55 3nn0 11348 . . . 4 3 ∈ ℕ0
56 2z 11447 . . . 4 2 ∈ ℤ
57 ovex 6718 . . . . 5 (1...3) ∈ V
58 1nn 11069 . . . . . . . 8 1 ∈ ℕ
5958jm2.27dlem3 37895 . . . . . . 7 1 ∈ (1...1)
60 df-2 11117 . . . . . . 7 2 = (1 + 1)
6159, 60, 58jm2.27dlem2 37894 . . . . . 6 1 ∈ (1...2)
6261, 4, 2jm2.27dlem2 37894 . . . . 5 1 ∈ (1...3)
63 mzpproj 37617 . . . . 5 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
6457, 62, 63mp2an 708 . . . 4 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
65 eluzrabdioph 37687 . . . 4 ((3 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3))
6655, 56, 64, 65mp3an 1464 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3)
67 3nn 11224 . . . . . . . . 9 3 ∈ ℕ
6867jm2.27dlem3 37895 . . . . . . . 8 3 ∈ (1...3)
69 mzpproj 37617 . . . . . . . 8 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
7057, 68, 69mp2an 708 . . . . . . 7 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
71 elnnrabdioph 37688 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3))
7255, 70, 71mp2an 708 . . . . . 6 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3)
73 fvex 6239 . . . . . . . . . . . . . . . 16 (𝑖‘8) ∈ V
74 fvex 6239 . . . . . . . . . . . . . . . 16 (𝑖‘9) ∈ V
75 fvex 6239 . . . . . . . . . . . . . . . 16 (𝑖10) ∈ V
76 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑖‘9) → (𝑔↑2) = ((𝑖‘9)↑2))
77 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = (𝑖‘8) → (𝑓↑2) = ((𝑖‘8)↑2))
7877oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑖‘8) → (((𝑒↑2) − 1) · (𝑓↑2)) = (((𝑒↑2) − 1) · ((𝑖‘8)↑2)))
7976, 78oveqan12rd 6710 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9)) → ((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))))
8079eqeq1d 2653 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9)) → (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ↔ (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1))
81803adant3 1101 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ↔ (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1))
82 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑖10) → ( + 1) = ((𝑖10) + 1))
8382oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑖10) → (( + 1) · (2 · ((𝑎‘3)↑2))) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))))
8483eqeq2d 2661 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑖10) → (𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ↔ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
85843ad2ant3 1104 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ↔ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
8681, 853anbi12d 1440 . . . . . . . . . . . . . . . . . 18 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))))
8786anbi2d 740 . . . . . . . . . . . . . . . . 17 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ↔ ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))))))
88 oveq1 6697 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑖‘8) → (𝑓 − (𝑎‘3)) = ((𝑖‘8) − (𝑎‘3)))
8988breq2d 4697 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑖‘8) → (𝑑 ∥ (𝑓 − (𝑎‘3)) ↔ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))))
9089anbi2d 740 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑖‘8) → (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ↔ ((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3)))))
91 oveq1 6697 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑖‘8) → (𝑓 − (𝑎‘2)) = ((𝑖‘8) − (𝑎‘2)))
9291breq2d 4697 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑖‘8) → ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ↔ (2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2))))
9392anbi1d 741 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑖‘8) → (((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)) ↔ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))
9490, 93anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑖‘8) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
95943ad2ant1 1102 . . . . . . . . . . . . . . . . 17 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9687, 95anbi12d 747 . . . . . . . . . . . . . . . 16 ((𝑓 = (𝑖‘8) ∧ 𝑔 = (𝑖‘9) ∧ = (𝑖10)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
9773, 74, 75, 96sbc3ie 3540 . . . . . . . . . . . . . . 15 ([(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9897sbcbii 3524 . . . . . . . . . . . . . 14 ([(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
9998sbcbii 3524 . . . . . . . . . . . . 13 ([(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
10099sbcbii 3524 . . . . . . . . . . . 12 ([(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
101100sbcbii 3524 . . . . . . . . . . 11 ([(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
102101sbcbii 3524 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
103 fvex 6239 . . . . . . . . . . . . 13 (𝑖‘5) ∈ V
104 fvex 6239 . . . . . . . . . . . . 13 (𝑖‘6) ∈ V
105 fvex 6239 . . . . . . . . . . . . 13 (𝑖‘7) ∈ V
106 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑖‘6) → (𝑑↑2) = ((𝑖‘6)↑2))
1071063ad2ant2 1103 . . . . . . . . . . . . . . . . . 18 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑑↑2) = ((𝑖‘6)↑2))
108 oveq1 6697 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑖‘5) → (𝑐↑2) = ((𝑖‘5)↑2))
109108oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑖‘5) → ((((𝑎‘1)↑2) − 1) · (𝑐↑2)) = ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)))
1101093ad2ant1 1102 . . . . . . . . . . . . . . . . . 18 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑎‘1)↑2) − 1) · (𝑐↑2)) = ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)))
111107, 110oveq12d 6708 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))))
112111eqeq1d 2653 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
113 eleq1 2718 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → (𝑒 ∈ (ℤ‘2) ↔ (𝑖‘7) ∈ (ℤ‘2)))
1141133ad2ant3 1104 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑒 ∈ (ℤ‘2) ↔ (𝑖‘7) ∈ (ℤ‘2)))
115112, 1143anbi23d 1442 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ↔ (((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))))
116 oveq1 6697 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = (𝑖‘7) → (𝑒↑2) = ((𝑖‘7)↑2))
117116oveq1d 6705 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑖‘7) → ((𝑒↑2) − 1) = (((𝑖‘7)↑2) − 1))
118117oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑖‘7) → (((𝑒↑2) − 1) · ((𝑖‘8)↑2)) = ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))
119118oveq2d 6706 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))))
120119eqeq1d 2653 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ↔ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1))
1211203ad2ant3 1104 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ↔ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1))
122 eqeq1 2655 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑖‘5) → (𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
1231223ad2ant1 1102 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2)))))
124 simp2 1082 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → 𝑑 = (𝑖‘6))
125 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (𝑒 − (𝑎‘1)) = ((𝑖‘7) − (𝑎‘1)))
1261253ad2ant3 1104 . . . . . . . . . . . . . . . . 17 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑒 − (𝑎‘1)) = ((𝑖‘7) − (𝑎‘1)))
127124, 126breq12d 4698 . . . . . . . . . . . . . . . 16 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (𝑑 ∥ (𝑒 − (𝑎‘1)) ↔ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))))
128121, 123, 1273anbi123d 1439 . . . . . . . . . . . . . . 15 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))))
129115, 128anbi12d 747 . . . . . . . . . . . . . 14 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ↔ ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))))))
130 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑖‘7) → (𝑒 − 1) = ((𝑖‘7) − 1))
131130breq2d 4697 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑖‘7) → ((2 · (𝑎‘3)) ∥ (𝑒 − 1) ↔ (2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1)))
132 breq1 4688 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑖‘6) → (𝑑 ∥ ((𝑖‘8) − (𝑎‘3)) ↔ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))))
133131, 132bi2anan9r 936 . . . . . . . . . . . . . . . 16 ((𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ↔ ((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3)))))
134133anbi1d 741 . . . . . . . . . . . . . . 15 ((𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
1351343adant1 1099 . . . . . . . . . . . . . 14 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
136129, 135anbi12d 747 . . . . . . . . . . . . 13 ((𝑐 = (𝑖‘5) ∧ 𝑑 = (𝑖‘6) ∧ 𝑒 = (𝑖‘7)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))))
137103, 104, 105, 136sbc3ie 3540 . . . . . . . . . . . 12 ([(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
138137sbcbii 3524 . . . . . . . . . . 11 ([(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
139138sbcbii 3524 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − (((𝑒↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ 𝑐 = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))
140 vex 3234 . . . . . . . . . . . 12 𝑖 ∈ V
141140resex 5478 . . . . . . . . . . 11 (𝑖 ↾ (1...3)) ∈ V
142 fvex 6239 . . . . . . . . . . 11 (𝑖‘4) ∈ V
143 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑖‘4) → (𝑏↑2) = ((𝑖‘4)↑2))
14462jm2.27dlem1 37893 . . . . . . . . . . . . . . . . . . 19 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘1) = (𝑖‘1))
145144oveq1d 6705 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑖‘1)↑2))
146145oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑖‘1)↑2) − 1))
14768jm2.27dlem1 37893 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘3) = (𝑖‘3))
148147oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑖‘3)↑2))
149146, 148oveq12d 6708 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2)) = ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))
150143, 149oveqan12rd 6710 . . . . . . . . . . . . . . 15 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))))
151150eqeq1d 2653 . . . . . . . . . . . . . 14 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ↔ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1))
152146oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2)) = ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))
153152oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))))
154153eqeq1d 2653 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
155154adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ↔ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1))
156151, 1553anbi12d 1440 . . . . . . . . . . . . 13 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ↔ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))))
157148oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (2 · ((𝑎‘3)↑2)) = (2 · ((𝑖‘3)↑2)))
158157oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))))
159158eqeq2d 2661 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ↔ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))))
160144oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘7) − (𝑎‘1)) = ((𝑖‘7) − (𝑖‘1)))
161160breq2d 4697 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)) ↔ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))
162159, 1613anbi23d 1442 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))))
163162adantr 480 . . . . . . . . . . . . 13 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1))) ↔ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))))
164156, 163anbi12d 747 . . . . . . . . . . . 12 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ↔ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))))
165147oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → (2 · (𝑎‘3)) = (2 · (𝑖‘3)))
166165breq1d 4695 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ↔ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)))
167147oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘8) − (𝑎‘3)) = ((𝑖‘8) − (𝑖‘3)))
168167breq2d 4697 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3)) ↔ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))))
169166, 168anbi12d 747 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ↔ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))))
1705jm2.27dlem1 37893 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑖 ↾ (1...3)) → (𝑎‘2) = (𝑖‘2))
171170oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑖‘8) − (𝑎‘2)) = ((𝑖‘8) − (𝑖‘2)))
172165, 171breq12d 4698 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ↔ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))))
173170, 147breq12d 4698 . . . . . . . . . . . . . . 15 (𝑎 = (𝑖 ↾ (1...3)) → ((𝑎‘2) ≤ (𝑎‘3) ↔ (𝑖‘2) ≤ (𝑖‘3)))
174172, 173anbi12d 747 . . . . . . . . . . . . . 14 (𝑎 = (𝑖 ↾ (1...3)) → (((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)) ↔ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))
175169, 174anbi12d 747 . . . . . . . . . . . . 13 (𝑎 = (𝑖 ↾ (1...3)) → ((((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
176175adantr 480 . . . . . . . . . . . 12 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))) ↔ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
177164, 176anbi12d 747 . . . . . . . . . . 11 ((𝑎 = (𝑖 ↾ (1...3)) ∧ 𝑏 = (𝑖‘4)) → ((((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))))
178141, 142, 177sbc2ie 3538 . . . . . . . . . 10 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑎‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ ((𝑖‘8) − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
179102, 139, 1783bitri 286 . . . . . . . . 9 ([(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))) ↔ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))))
180179rabbii 3216 . . . . . . . 8 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} = {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))}
181 10nn0 11554 . . . . . . . . . . . 12 10 ∈ ℕ0
182 ovex 6718 . . . . . . . . . . . . . . 15 (1...10) ∈ V
183 df-5 11120 . . . . . . . . . . . . . . . . 17 5 = (4 + 1)
184 df-6 11121 . . . . . . . . . . . . . . . . . 18 6 = (5 + 1)
185 df-7 11122 . . . . . . . . . . . . . . . . . . 19 7 = (6 + 1)
186 df-8 11123 . . . . . . . . . . . . . . . . . . . 20 8 = (7 + 1)
187 df-9 11124 . . . . . . . . . . . . . . . . . . . . 21 9 = (8 + 1)
188 9p1e10 11534 . . . . . . . . . . . . . . . . . . . . . . 23 (9 + 1) = 10
189188eqcomi 2660 . . . . . . . . . . . . . . . . . . . . . 22 10 = (9 + 1)
190 ssid 3657 . . . . . . . . . . . . . . . . . . . . . 22 (1...10) ⊆ (1...10)
191189, 190jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . . . . 21 (1...9) ⊆ (1...10)
192187, 191jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . . . 20 (1...8) ⊆ (1...10)
193186, 192jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . . 19 (1...7) ⊆ (1...10)
194185, 193jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . 18 (1...6) ⊆ (1...10)
195184, 194jm2.27dlem5 37897 . . . . . . . . . . . . . . . . 17 (1...5) ⊆ (1...10)
196183, 195jm2.27dlem5 37897 . . . . . . . . . . . . . . . 16 (1...4) ⊆ (1...10)
197 4nn 11225 . . . . . . . . . . . . . . . . 17 4 ∈ ℕ
198197jm2.27dlem3 37895 . . . . . . . . . . . . . . . 16 4 ∈ (1...4)
199196, 198sselii 3633 . . . . . . . . . . . . . . 15 4 ∈ (1...10)
200 mzpproj 37617 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 4 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10)))
201182, 199, 200mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10))
202 2nn0 11347 . . . . . . . . . . . . . 14 2 ∈ ℕ0
203 mzpexpmpt 37625 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘4)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10)))
204201, 202, 203mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10))
205 df-4 11119 . . . . . . . . . . . . . . . . . . . . 21 4 = (3 + 1)
206205, 196jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . . . 20 (1...3) ⊆ (1...10)
2074, 206jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . . 19 (1...2) ⊆ (1...10)
20860, 207jm2.27dlem5 37897 . . . . . . . . . . . . . . . . . 18 (1...1) ⊆ (1...10)
209208, 59sselii 3633 . . . . . . . . . . . . . . . . 17 1 ∈ (1...10)
210 mzpproj 37617 . . . . . . . . . . . . . . . . 17 (((1...10) ∈ V ∧ 1 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10)))
211182, 209, 210mp2an 708 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10))
212 mzpexpmpt 37625 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10)))
213211, 202, 212mp2an 708 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10))
214 1z 11445 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
215 mzpconstmpt 37620 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 1 ∈ ℤ) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10)))
216182, 214, 215mp2an 708 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))
217 mzpsubmpt 37623 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘1)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)))
218213, 216, 217mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10))
219206, 68sselii 3633 . . . . . . . . . . . . . . . 16 3 ∈ (1...10)
220 mzpproj 37617 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 3 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10)))
221182, 219, 220mp2an 708 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))
222 mzpexpmpt 37625 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10)))
223221, 202, 222mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))
224 mzpmulmpt 37622 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10)))
225218, 223, 224mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))
226 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘4)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)))
227204, 225, 226mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))
228 eqrabdioph 37658 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10))
229181, 227, 216, 228mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10)
230 6nn 11227 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
231230jm2.27dlem3 37895 . . . . . . . . . . . . . . . 16 6 ∈ (1...6)
232194, 231sselii 3633 . . . . . . . . . . . . . . 15 6 ∈ (1...10)
233 mzpproj 37617 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 6 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)))
234182, 232, 233mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10))
235 mzpexpmpt 37625 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10)))
236234, 202, 235mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10))
237 5nn 11226 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ
238237jm2.27dlem3 37895 . . . . . . . . . . . . . . . . 17 5 ∈ (1...5)
239195, 238sselii 3633 . . . . . . . . . . . . . . . 16 5 ∈ (1...10)
240 mzpproj 37617 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 5 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)))
241182, 239, 240mp2an 708 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10))
242 mzpexpmpt 37625 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10)))
243241, 202, 242mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10))
244 mzpmulmpt 37622 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘1)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘5)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10)))
245218, 243, 244mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10))
246 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘6)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10)))
247236, 245, 246mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10))
248 eqrabdioph 37658 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10))
249181, 247, 216, 248mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10)
250 7nn 11228 . . . . . . . . . . . . . . 15 7 ∈ ℕ
251250jm2.27dlem3 37895 . . . . . . . . . . . . . 14 7 ∈ (1...7)
252193, 251sselii 3633 . . . . . . . . . . . . 13 7 ∈ (1...10)
253 mzpproj 37617 . . . . . . . . . . . . 13 (((1...10) ∈ V ∧ 7 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)))
254182, 252, 253mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10))
255 eluzrabdioph 37687 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ 2 ∈ ℤ ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10))
256181, 56, 254, 255mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10)
257 3anrabdioph 37663 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘7) ∈ (ℤ‘2)} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10))
258229, 249, 256, 257mp3an 1464 . . . . . . . . . 10 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10)
259 9nn 11230 . . . . . . . . . . . . . . . . 17 9 ∈ ℕ
260259jm2.27dlem3 37895 . . . . . . . . . . . . . . . 16 9 ∈ (1...9)
261260, 189, 259jm2.27dlem2 37894 . . . . . . . . . . . . . . 15 9 ∈ (1...10)
262 mzpproj 37617 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 9 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10)))
263182, 261, 262mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10))
264 mzpexpmpt 37625 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘9)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10)))
265263, 202, 264mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10))
266 mzpexpmpt 37625 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10)))
267254, 202, 266mp2an 708 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10))
268 mzpsubmpt 37623 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10)))
269267, 216, 268mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10))
270 8nn 11229 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ
271270jm2.27dlem3 37895 . . . . . . . . . . . . . . . . 17 8 ∈ (1...8)
272192, 271sselii 3633 . . . . . . . . . . . . . . . 16 8 ∈ (1...10)
273 mzpproj 37617 . . . . . . . . . . . . . . . 16 (((1...10) ∈ V ∧ 8 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)))
274182, 272, 273mp2an 708 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10))
275 mzpexpmpt 37625 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ 2 ∈ ℕ0) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10)))
276274, 202, 275mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10))
277 mzpmulmpt 37622 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘7)↑2) − 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10)))
278269, 276, 277mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10))
279 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘9)↑2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10)))
280265, 278, 279mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10))
281 eqrabdioph 37658 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2)))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10))
282181, 280, 216, 281mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10)
283 10nn 11552 . . . . . . . . . . . . . . . 16 10 ∈ ℕ
284283jm2.27dlem3 37895 . . . . . . . . . . . . . . 15 10 ∈ (1...10)
285 mzpproj 37617 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 10 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10)))
286182, 284, 285mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10))
287 mzpaddmpt 37621 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖10)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10)))
288286, 216, 287mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10))
289 mzpconstmpt 37620 . . . . . . . . . . . . . . 15 (((1...10) ∈ V ∧ 2 ∈ ℤ) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)))
290182, 56, 289mp2an 708 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 2) ∈ (mzPoly‘(1...10))
291 mzpmulmpt 37622 . . . . . . . . . . . . . 14 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘3)↑2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10)))
292290, 223, 291mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))
293 mzpmulmpt 37622 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖10) + 1)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · ((𝑖‘3)↑2))) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10)))
294288, 292, 293mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))
295 eqrabdioph 37658 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘5)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10))
296181, 241, 294, 295mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10)
297 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘1)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10)))
298254, 211, 297mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10))
299 dvdsrabdioph 37691 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7) − (𝑖‘1))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10))
300181, 234, 298, 299mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10)
301 3anrabdioph 37663 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2)))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10))
302282, 296, 300, 301mp3an 1464 . . . . . . . . . 10 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10)
303 anrabdioph 37661 . . . . . . . . . 10 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10))
304258, 302, 303mp2an 708 . . . . . . . . 9 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10)
305 mzpmulmpt 37622 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 2) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)))
306290, 221, 305mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10))
307 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘7)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ 1) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10)))
308254, 216, 307mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10))
309 dvdsrabdioph 37691 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘7) − 1)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10))
310181, 306, 308, 309mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10)
311 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10)))
312274, 221, 311mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10))
313 dvdsrabdioph 37691 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘6)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8) − (𝑖‘3))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10))
314181, 234, 312, 313mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10)
315 anrabdioph 37661 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1)} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10))
316310, 314, 315mp2an 708 . . . . . . . . . 10 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10)
317207, 3sselii 3633 . . . . . . . . . . . . . 14 2 ∈ (1...10)
318 mzpproj 37617 . . . . . . . . . . . . . 14 (((1...10) ∈ V ∧ 2 ∈ (1...10)) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10)))
319182, 317, 318mp2an 708 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10))
320 mzpsubmpt 37623 . . . . . . . . . . . . 13 (((𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘8)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10))) → (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10)))
321274, 319, 320mp2an 708 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10))
322 dvdsrabdioph 37691 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (2 · (𝑖‘3))) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ ((𝑖‘8) − (𝑖‘2))) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10))
323181, 306, 321, 322mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10)
324 lerabdioph 37686 . . . . . . . . . . . 12 ((10 ∈ ℕ0 ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘2)) ∈ (mzPoly‘(1...10)) ∧ (𝑖 ∈ (ℤ ↑𝑚 (1...10)) ↦ (𝑖‘3)) ∈ (mzPoly‘(1...10))) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10))
325181, 319, 221, 324mp3an 1464 . . . . . . . . . . 11 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10)
326 anrabdioph 37661 . . . . . . . . . . 11 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (𝑖‘2) ≤ (𝑖‘3)} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10))
327323, 325, 326mp2an 708 . . . . . . . . . 10 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10)
328 anrabdioph 37661 . . . . . . . . . 10 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3)))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10))
329316, 327, 328mp2an 708 . . . . . . . . 9 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10)
330 anrabdioph 37661 . . . . . . . . 9 (({𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1))))} ∈ (Dioph‘10) ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3)))} ∈ (Dioph‘10)) → {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))} ∈ (Dioph‘10))
331304, 329, 330mp2an 708 . . . . . . . 8 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ ((((((𝑖‘4)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘3)↑2))) = 1 ∧ (((𝑖‘6)↑2) − ((((𝑖‘1)↑2) − 1) · ((𝑖‘5)↑2))) = 1 ∧ (𝑖‘7) ∈ (ℤ‘2)) ∧ ((((𝑖‘9)↑2) − ((((𝑖‘7)↑2) − 1) · ((𝑖‘8)↑2))) = 1 ∧ (𝑖‘5) = (((𝑖10) + 1) · (2 · ((𝑖‘3)↑2))) ∧ (𝑖‘6) ∥ ((𝑖‘7) − (𝑖‘1)))) ∧ (((2 · (𝑖‘3)) ∥ ((𝑖‘7) − 1) ∧ (𝑖‘6) ∥ ((𝑖‘8) − (𝑖‘3))) ∧ ((2 · (𝑖‘3)) ∥ ((𝑖‘8) − (𝑖‘2)) ∧ (𝑖‘2) ≤ (𝑖‘3))))} ∈ (Dioph‘10)
332180, 331eqeltri 2726 . . . . . . 7 {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘10)
333205, 183, 184, 185, 186, 187, 1897rexfrabdioph 37681 . . . . . . 7 ((3 ∈ ℕ0 ∧ {𝑖 ∈ (ℕ0𝑚 (1...10)) ∣ [(𝑖 ↾ (1...3)) / 𝑎][(𝑖‘4) / 𝑏][(𝑖‘5) / 𝑐][(𝑖‘6) / 𝑑][(𝑖‘7) / 𝑒][(𝑖‘8) / 𝑓][(𝑖‘9) / 𝑔][(𝑖10) / ](((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘10)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3))
33455, 332, 333mp2an 708 . . . . . 6 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3)
335 anrabdioph 37661 . . . . . 6 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3))
33672, 334, 335mp2an 708 . . . . 5 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3)
337 mzpproj 37617 . . . . . . 7 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
33857, 5, 337mp2an 708 . . . . . 6 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
339 elnnrabdioph 37688 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
34055, 338, 339mp2an 708 . . . . 5 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
341 anrabdioph 37661 . . . . 5 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3)))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3))
342336, 340, 341mp2an 708 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3)
343 eq0rabdioph 37657 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
34455, 70, 343mp2an 708 . . . . 5 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
345 eq0rabdioph 37657 . . . . . 6 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
34655, 338, 345mp2an 708 . . . . 5 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
347 anrabdioph 37661 . . . . 5 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3))
348344, 346, 347mp2an 708 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3)
349 orrabdioph 37662 . . . 4 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3))
350342, 348, 349mp2an 708 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3)
351 anrabdioph 37661 . . 3 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) ∈ (ℤ‘2)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))} ∈ (Dioph‘3))
35266, 350, 351mp2an 708 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ ((((𝑎‘3) ∈ ℕ ∧ ∃𝑏 ∈ ℕ0𝑐 ∈ ℕ0𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0 (((((𝑏↑2) − ((((𝑎‘1)↑2) − 1) · ((𝑎‘3)↑2))) = 1 ∧ ((𝑑↑2) − ((((𝑎‘1)↑2) − 1) · (𝑐↑2))) = 1 ∧ 𝑒 ∈ (ℤ‘2)) ∧ (((𝑔↑2) − (((𝑒↑2) − 1) · (𝑓↑2))) = 1 ∧ 𝑐 = (( + 1) · (2 · ((𝑎‘3)↑2))) ∧ 𝑑 ∥ (𝑒 − (𝑎‘1)))) ∧ (((2 · (𝑎‘3)) ∥ (𝑒 − 1) ∧ 𝑑 ∥ (𝑓 − (𝑎‘3))) ∧ ((2 · (𝑎‘3)) ∥ (𝑓 − (𝑎‘2)) ∧ (𝑎‘2) ≤ (𝑎‘3))))) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = 0 ∧ (𝑎‘2) = 0)))} ∈ (Dioph‘3)
35354, 352eqeltri 2726 1 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Yrm (𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  Vcvv 3231  [wsbc 3468   class class class wbr 4685  cmpt 4762  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  cn 11058  2c2 11108  3c3 11109  4c4 11110  5c5 11111  6c6 11112  7c7 11113  8c8 11114  9c9 11115  0cn0 11330  cz 11415  cdc 11531  cuz 11725  ...cfz 12364  cexp 12900  cdvds 15027  mzPolycmzp 37602  Diophcdioph 37635   Yrm crmy 37782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-numer 15490  df-denom 15491  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-mzpcl 37603  df-mzp 37604  df-dioph 37636  df-squarenn 37722  df-pell1qr 37723  df-pell14qr 37724  df-pell1234qr 37725  df-pellfund 37726  df-rmx 37783  df-rmy 37784
This theorem is referenced by:  rmxdioph  37900  expdiophlem2  37906
  Copyright terms: Public domain W3C validator