Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxy1 Structured version   Visualization version   GIF version

Theorem rmxy1 38013
Description: Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014.)
Assertion
Ref Expression
rmxy1 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1))

Proof of Theorem rmxy1
StepHypRef Expression
1 1z 11609 . . . 4 1 ∈ ℤ
2 rmxyval 38006 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → ((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑1))
31, 2mpan2 671 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = ((𝐴 + (√‘((𝐴↑2) − 1)))↑1))
4 rmbaserp 38010 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ+)
54rpcnd 12077 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℂ)
65exp1d 13210 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑1) = (𝐴 + (√‘((𝐴↑2) − 1))))
7 rmspecpos 38007 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
87rpcnd 12077 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
98sqrtcld 14384 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
109mulid1d 10259 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1)))
1110eqcomd 2777 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) = ((√‘((𝐴↑2) − 1)) · 1))
1211oveq2d 6809 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)))
133, 6, 123eqtrd 2809 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)))
14 rmspecsqrtnq 37996 . . 3 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
15 nn0ssq 11999 . . . 4 0 ⊆ ℚ
16 frmx 38004 . . . . . 6 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1716fovcl 6912 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm 1) ∈ ℕ0)
181, 17mpan2 671 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) ∈ ℕ0)
1915, 18sseldi 3750 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Xrm 1) ∈ ℚ)
20 zssq 11998 . . . 4 ℤ ⊆ ℚ
21 frmy 38005 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2221fovcl 6912 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm 1) ∈ ℤ)
231, 22mpan2 671 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) ∈ ℤ)
2420, 23sseldi 3750 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) ∈ ℚ)
25 eluzelz 11898 . . . 4 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
26 zq 11997 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2725, 26syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℚ)
2820, 1sselii 3749 . . . 4 1 ∈ ℚ
2928a1i 11 . . 3 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℚ)
30 qirropth 37999 . . 3 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm 1) ∈ ℚ ∧ (𝐴 Yrm 1) ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 1 ∈ ℚ)) → (((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ↔ ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)))
3114, 19, 24, 27, 29, 30syl122anc 1485 . 2 (𝐴 ∈ (ℤ‘2) → (((𝐴 Xrm 1) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 1))) = (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ↔ ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1)))
3213, 31mpbid 222 1 (𝐴 ∈ (ℤ‘2) → ((𝐴 Xrm 1) = 𝐴 ∧ (𝐴 Yrm 1) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  cdif 3720  cfv 6031  (class class class)co 6793  cc 10136  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  2c2 11272  0cn0 11494  cz 11579  cuz 11888  cq 11991  cexp 13067  csqrt 14181   Xrm crmx 37990   Yrm crmy 37991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-xnn0 11566  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-dvds 15190  df-gcd 15425  df-numer 15650  df-denom 15651  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-squarenn 37931  df-pell1qr 37932  df-pell14qr 37933  df-pell1234qr 37934  df-pellfund 37935  df-rmx 37992  df-rmy 37993
This theorem is referenced by:  rmx1  38017  rmy1  38021
  Copyright terms: Public domain W3C validator