Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecnonsq Structured version   Visualization version   GIF version

Theorem rmspecnonsq 37974
Description: The discriminant used to define the X and Y sequences is a nonsquare positive integer and thus a valid Pell equation discriminant. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecnonsq (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))

Proof of Theorem rmspecnonsq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 11889 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
2 zsqcl 13128 . . . . 5 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
31, 2syl 17 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
4 1zzd 11600 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℤ)
53, 4zsubcld 11679 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
6 sq1 13152 . . . . 5 (1↑2) = 1
7 eluz2b2 11954 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
87simprbi 483 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
9 1red 10247 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
10 eluzelre 11890 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
11 0le1 10743 . . . . . . . 8 0 ≤ 1
1211a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
13 eluzge2nn0 11920 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1413nn0ge0d 11546 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
159, 10, 12, 14lt2sqd 13237 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
168, 15mpbid 222 . . . . 5 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
176, 16syl5eqbrr 4840 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
1810resqcld 13229 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
199, 18posdifd 10806 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2017, 19mpbid 222 . . 3 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
21 elnnz 11579 . . 3 (((𝐴↑2) − 1) ∈ ℕ ↔ (((𝐴↑2) − 1) ∈ ℤ ∧ 0 < ((𝐴↑2) − 1)))
225, 20, 21sylanbrc 701 . 2 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
23 rmspecsqrtnq 37972 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
2423eldifbd 3728 . . . 4 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
2524intnand 1000 . . 3 (𝐴 ∈ (ℤ‘2) → ¬ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
26 df-squarenn 37907 . . . . 5 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
2726eleq2i 2831 . . . 4 (((𝐴↑2) − 1) ∈ ◻NN ↔ ((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ})
28 fveq2 6352 . . . . . 6 (𝑎 = ((𝐴↑2) − 1) → (√‘𝑎) = (√‘((𝐴↑2) − 1)))
2928eleq1d 2824 . . . . 5 (𝑎 = ((𝐴↑2) − 1) → ((√‘𝑎) ∈ ℚ ↔ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3029elrab 3504 . . . 4 (((𝐴↑2) − 1) ∈ {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ} ↔ (((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ))
3127, 30bitr2i 265 . . 3 ((((𝐴↑2) − 1) ∈ ℕ ∧ (√‘((𝐴↑2) − 1)) ∈ ℚ) ↔ ((𝐴↑2) − 1) ∈ ◻NN)
3225, 31sylnib 317 . 2 (𝐴 ∈ (ℤ‘2) → ¬ ((𝐴↑2) − 1) ∈ ◻NN)
3322, 32eldifd 3726 1 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  cdif 3712   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   < clt 10266  cle 10267  cmin 10458  cn 11212  2c2 11262  cz 11569  cuz 11879  cq 11981  cexp 13054  csqrt 14172  NNcsquarenn 37902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-numer 15645  df-denom 15646  df-squarenn 37907
This theorem is referenced by:  rmspecfund  37976  rmxyelqirr  37977  rmxycomplete  37984  rmbaserp  37986  rmxyneg  37987  rmxm1  38001  rmxluc  38003  rmxdbl  38006  ltrmxnn0  38018  jm2.19lem1  38058  jm2.23  38065  rmxdiophlem  38084
  Copyright terms: Public domain W3C validator