MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmbn Structured version   Visualization version   GIF version

Theorem rlmbn 23376
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
rlmbn ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban)

Proof of Theorem rlmbn
StepHypRef Expression
1 simp3 1132 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp)
2 cmsms 23364 . . . . 5 (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp)
3 mstps 22480 . . . . 5 (𝑅 ∈ MetSp → 𝑅 ∈ TopSp)
41, 2, 33syl 18 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp)
5 eqid 2771 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2771 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
75, 6tpsuni 20961 . . . 4 (𝑅 ∈ TopSp → (Base‘𝑅) = (TopOpen‘𝑅))
84, 7syl 17 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = (TopOpen‘𝑅))
96tpstop 20962 . . . 4 (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top)
10 eqid 2771 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
1110topcld 21060 . . . 4 ((TopOpen‘𝑅) ∈ Top → (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)))
124, 9, 113syl 18 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)))
138, 12eqeltrd 2850 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)))
145ressid 16142 . . . 4 (𝑅 ∈ NrmRing → (𝑅s (Base‘𝑅)) = 𝑅)
15143ad2ant1 1127 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅s (Base‘𝑅)) = 𝑅)
16 simp2 1131 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing)
1715, 16eqeltrd 2850 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅s (Base‘𝑅)) ∈ DivRing)
18 simp1 1130 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing)
19 nrgring 22687 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
20193ad2ant1 1127 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring)
215subrgid 18992 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
2220, 21syl 17 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅))
23 rlmval 19406 . . . 4 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
2423, 6srabn 23375 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅s (Base‘𝑅)) ∈ DivRing)))
2518, 1, 22, 24syl3anc 1476 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅s (Base‘𝑅)) ∈ DivRing)))
2613, 17, 25mpbir2and 692 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   cuni 4575  cfv 6030  (class class class)co 6796  Basecbs 16064  s cress 16065  TopOpenctopn 16290  Ringcrg 18755  DivRingcdr 18957  SubRingcsubrg 18986  ringLModcrglmod 19384  Topctop 20918  TopSpctps 20957  Clsdccld 21041  MetSpcmt 22343  NrmRingcnrg 22604  CMetSpccms 23348  Bancbn 23349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fi 8477  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ico 12386  df-icc 12387  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ds 16172  df-rest 16291  df-topn 16292  df-0g 16310  df-topgen 16312  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-mgp 18698  df-ur 18710  df-ring 18757  df-subrg 18988  df-abv 19027  df-lmod 19075  df-lvec 19316  df-sra 19387  df-rgmod 19388  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-haus 21340  df-fil 21870  df-flim 21963  df-xms 22345  df-ms 22346  df-nm 22607  df-ngp 22608  df-nrg 22610  df-nlm 22611  df-nvc 22612  df-cfil 23272  df-cmet 23274  df-cms 23351  df-bn 23352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator