![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by Mario Carneiro, 24-Sep-2014.) |
Ref | Expression |
---|---|
rlimrel | ⊢ Rel ⇝𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rlim 14264 | . 2 ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} | |
2 | 1 | relopabi 5278 | 1 ⊢ Rel ⇝𝑟 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 dom cdm 5143 Rel wrel 5148 ‘cfv 5926 (class class class)co 6690 ↑pm cpm 7900 ℂcc 9972 ℝcr 9973 < clt 10112 ≤ cle 10113 − cmin 10304 ℝ+crp 11870 abscabs 14018 ⇝𝑟 crli 14260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-rlim 14264 |
This theorem is referenced by: rlim 14270 rlimpm 14275 rlimdm 14326 caucvgrlem2 14449 caucvgr 14450 rlimdmafv 41578 |
Copyright terms: Public domain | W3C validator |