MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Visualization version   GIF version

Theorem rlimno1 14334
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimno1.2 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
rlimno1.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimno1.4 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
rlimno1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimno1
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1487 . . . 4 ¬ ⊥
2 rlimno1.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3 rlimno1.4 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
42, 3reccld 10754 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
54ralrimiva 2962 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
65adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
7 simpr 477 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8 1re 9999 . . . . . . . . 9 1 ∈ ℝ
9 ifcl 4108 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
107, 8, 9sylancl 693 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
11 1rp 11796 . . . . . . . . 9 1 ∈ ℝ+
1211a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℝ+)
13 max1 11975 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
148, 7, 13sylancr 694 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
1510, 12, 14rpgecld 11871 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
1615rpreccld 11842 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ+)
17 rlimno1.2 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
1817adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
196, 16, 18rlimi 14194 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
20 dmmptg 5601 . . . . . . . . . 10 (∀𝑥𝐴 (1 / 𝐵) ∈ ℂ → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
215, 20syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
22 rlimss 14183 . . . . . . . . . 10 ((𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2317, 22syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2421, 23eqsstr3d 3625 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
2524adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
26 rexanre 14036 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
2725, 26syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
28 rlimno1.1 . . . . . . . . 9 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
29 ressxr 10043 . . . . . . . . . . 11 ℝ ⊆ ℝ*
3024, 29syl6ss 3600 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
31 supxrunb1 12108 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3328, 32mpbird 247 . . . . . . . 8 (𝜑 → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
3433adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
35 r19.29 3067 . . . . . . . 8 ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
36 r19.29r 3068 . . . . . . . . . 10 ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
372adantlr 750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
383adantlr 750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≠ 0)
3937, 38absrpcld 14137 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ+)
4039adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ+)
4115ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
428a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℝ)
43 0le1 10511 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 0 ≤ 1)
4540rpred 11832 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ)
467ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
4710ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
48 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ 𝑦)
49 max2 11977 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
508, 46, 49sylancr 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
5145, 46, 47, 48, 50letrd 10154 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ if(1 ≤ 𝑦, 𝑦, 1))
5240, 41, 42, 44, 51lediv2ad 11854 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)))
5341rprecred 11843 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ)
5440rprecred 11843 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / (abs‘𝐵)) ∈ ℝ)
5553, 54lenltd 10143 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)) ↔ ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
5652, 55mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
5737adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ∈ ℂ)
5838adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ≠ 0)
5957, 58reccld 10754 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / 𝐵) ∈ ℂ)
6059subid1d 10341 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / 𝐵) − 0) = (1 / 𝐵))
6160fveq2d 6162 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (abs‘(1 / 𝐵)))
62 1cnd 10016 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℂ)
6362, 57, 58absdivd 14144 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘(1 / 𝐵)) = ((abs‘1) / (abs‘𝐵)))
6442, 44absidd 14111 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘1) = 1)
6564oveq1d 6630 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘1) / (abs‘𝐵)) = (1 / (abs‘𝐵)))
6661, 63, 653eqtrd 2659 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (1 / (abs‘𝐵)))
6766breq1d 4633 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ↔ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
6856, 67mtbird 315 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6968pm2.21d 118 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) → ⊥))
7069expimpd 628 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘𝐵) ≤ 𝑦 ∧ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) → ⊥))
7170ancomsd 470 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦) → ⊥))
7271imim2d 57 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → (𝑐𝑥 → ⊥)))
7372com23 86 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑐𝑥 → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥)))
7473impd 447 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7574rexlimdva 3026 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7636, 75syl5 34 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7776rexlimdvw 3029 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7835, 77syl5 34 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7934, 78mpand 710 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥))
8027, 79sylbird 250 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)) → ⊥))
8119, 80mpand 710 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) → ⊥))
821, 81mtoi 190 . . 3 ((𝜑𝑦 ∈ ℝ) → ¬ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8382nrexdv 2997 . 2 (𝜑 → ¬ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8424, 2elo1mpt 14215 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
85 rexcom 3093 . . 3 (∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8684, 85syl6bb 276 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
8783, 86mtbird 315 1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wfal 1485  wcel 1987  wne 2790  wral 2908  wrex 2909  wss 3560  ifcif 4064   class class class wbr 4623  cmpt 4683  dom cdm 5084  cfv 5857  (class class class)co 6615  supcsup 8306  cc 9894  cr 9895  0cc0 9896  1c1 9897  +∞cpnf 10031  *cxr 10033   < clt 10034  cle 10035  cmin 10226   / cdiv 10644  +crp 11792  abscabs 13924  𝑟 crli 14166  𝑂(1)co1 14167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-ico 12139  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-rlim 14170  df-o1 14171  df-lo1 14172
This theorem is referenced by:  logno1  24316
  Copyright terms: Public domain W3C validator